
Tom Fifield, Diane Fleming, Anne Gentle,
Lorin Hochstein, Jonathan Proulx,

Everett Toews & Joe Topjian

OpenStack
 Operations Guide
SET UP AND MANAGE YOUR OPENSTACK CLOUD

Join the global community!

Get Involved and get more
out of OpenStack!

Take the User Survey and influence the OpenStack Roadmap

Find a local User Group near you and attend a meet up

Attend a Training Course

OVER 70 GLOBAL
USER GROUPS

http://www.openstack.org/user-survey
https://wiki.openstack.org/wiki/OpenStack_User_Groups
http://www.openstack.org/training
http://www.openstack.org

by Tom Fifield, Diane Fleming, Anne Gentle, Lorin
Hochstein, Jonathan Proulx, Everett Toews, and Joe

Topjian

OpenStack Operations Guide

978-1-491-94695-4

[LSI]

OpenStack Operations Guide
by Tom Fifield, Diane Fleming, Anne Gentle, Lorin Hochstein, Jonathan Proulx, Everett Toews, and Joe
Topjian

Copyright © 2014 OpenStack Foundation. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corpo‐
rate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Brian Anderson Interior Designer: David Futato
Cover Designer: Karen Montgomery

March 2014: First Edition

See http://oreilly.com/catalog/errata.csp?isbn=9781491946954 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. OpenStack Operations Guide, the image of a Crested Agouti, and related trade dress
are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con‐
tained herein.

http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/errata.csp?isbn=9781491946954

Table of Contents

Acknowledgments. xi

Preface. xv

1. Provisioning and Deployment. 21
Automated Deployment 21

Disk Partitioning and RAID 22
Network Configuration 23

Automated Configuration 23
Remote Management 24

2. Cloud Controller Design. 25
Hardware Considerations 25
Separation of Services 27
Database 27
Message Queue 27
Application Programming Interface (API) 28
Extensions 28
Scheduler 29
Images 29
Dashboard 30
Authentication and Authorization 30
Network Considerations 30

3. Scaling. 33
The Starting Point 33
Adding Controller Nodes 35
Segregating Your Cloud 35

iii

Cells and Regions 36
Availability Zones and Host Aggregates 37

Scalable Hardware 38
Hardware Procurement 38
Capacity Planning 39
Burn-in Testing 39

4. Compute Nodes. 41
CPU Choice 41
Hypervisor Choice 41
Instance Storage Solutions 42

Off Compute Node Storage – Shared File System 42
On Compute Node Storage – Shared File System 43
On Compute Node Storage – Non-shared File System 44
Issues with Live Migration 44
Choice of File System 44

Overcommitting 45
Logging 45
Networking 45

5. Storage Decisions. 47
OpenStack Storage Concepts 47

Object Storage 48
Block Storage 48
File-level Storage 49

Choosing Storage Back-ends 49
Commodity Storage Back-end Technologies 51

Notes on OpenStack Object Storage 53

6. Network Design. 55
Management Network 55
Public Addressing Options 55
IP Address Planning 56
Network Topology 57

VLANs 58
Multi-NIC 59
Multi-host and Single-host Networking 59

Services for Networking 59
NTP 59
DNS 60

7. Example Architecture. 61

iv | Table of Contents

Overview 61
Rationale 62

Why Not Use the OpenStack Network Service (quantum)? 64
Why Use Multi-host Networking? 64

Detailed Description 64
Optional Extensions 66

8. Lay of the Land. 69
Client Command Line Tools 69

Installing the Tools 70
Administrative Command Line Tools 70
Getting Credentials 71
Command Line Tricks and Traps 72
Servers and Services 74
Diagnose your compute nodes 76

Network 77
Users and Projects 77
Running Instances 78

9. Managing Projects and Users. 81
Projects or Tenants? 81
Managing Projects 81

Adding Projects 81
Quotas 82

Set Compute Service Quotas 83
Set Block Storage quotas 85

User Management 87
Creating New Users 87
Associating Users with Projects 88

Customizing Authorization 89
Users that Disrupt Other Users 91

10. User-facing Operations. 93
Images 93

Adding Images 93
Deleting Images 94
Other CLI Options 94
The Image Service and the Database 94
Example Image Service Database Queries 95

Flavors 95
How do I modify an existing flavor? 96

Security groups 97

Table of Contents | v

Block Storage 99
Block Storage Creation Failures 100

Instances 101
Starting Instances 101
Instance Boot Failures 101
Instance-specific Data 102

Associating Security Groups 104
Floating IPs 104
Attaching Block Storage 105
Taking Snapshots 106

Ensuring snapshots are consistent 107
Instances in the Database 108

11. Maintenance, Failures, and Debugging. 111
Cloud Controller and Storage Proxy Failures and Maintenance 111

Planned Maintenance 111
Rebooting a cloud controller or Storage Proxy 111
After a Cloud Controller or Storage Proxy Reboots 112
Total Cloud Controller Failure 112

Compute Node Failures and Maintenance 112
Planned Maintenance 113
After a Compute Node Reboots 113
Instances 114
Inspecting and Recovering Data from Failed Instances 114
Volumes 117
Total Compute Node Failure 117
/var/lib/nova/instances 118

Storage Node Failures and Maintenance 118
Rebooting a Storage Node 119
Shutting Down a Storage Node 119
Replacing a Swift Disk 119

Handling a Complete Failure 120
Configuration Management 121
Working with Hardware 121

Adding a Compute Node 121
Adding an Object Storage Node 122
Replacing Components 122

Databases 122
Database Connectivity 123
Performance and Optimizing 123

HDWMY 123
Hourly 123

vi | Table of Contents

Daily 123
Weekly 124
Monthly 124
Quarterly 124
Semi-Annually 124

Determining which Component Is Broken 124
Tailing Logs 125
Running Daemons on the CLI 125
Example of Complexity 125

Upgrades 126
Uninstalling 127

12. Network Troubleshooting. 129
Using “ip a” to Check Interface States 129
Network Traffic in the Cloud 130
Finding a Failure in the Path 131
tcpdump 131
iptables 133
Network Configuration in the Database 133

Manually De-Associating a Floating IP 133
Debugging DHCP Issues 134
Debugging DNS Issues 137

13. Logging and Monitoring. 139
Where Are the Logs? 139

Cloud Controller 139
Compute Nodes 139
Block Storage Nodes 140

How to Read the Logs 140
Tracing Instance Requests 141
Adding Custom Logging Statements 142
RabbitMQ Web Management Interface or rabbitmqctl 143
Centrally Managing Logs 143

rsyslog Client Configuration 143
rsyslog Server Configuration 144

StackTach 145
Monitoring 145

Process Monitoring 146
Resource Alerting 146
OpenStack-specific Resources 147
Intelligent Alerting 149

Table of Contents | vii

Trending 150

14. Backup and Recovery. 153
What to Backup 153
Database Backups 154
File System Backups 154

Compute 154
Image Catalog and Delivery 155
Identity 155
Block Storage 155
Object Storage 155

Recovering Backups 155

15. Customize. 157
DevStack 157
Middleware Example 160
Nova Scheduler Example 165
Dashboard 170

16. Upstream OpenStack. 171
Getting Help 171
Reporting Bugs 172

Confirming & Prioritizing 173
Bug Fixing 174
After the Change is Accepted 174

Join the OpenStack Community 175
Features and the Development Roadmap 175
How to Contribute to the Documentation 177
Security Information 177
Finding Additional Information 178

17. Advanced Configuration. 179
Differences between various drivers 179
Periodic tasks 180
Specific configuration topics 181

OpenStack Compute (Nova) 181

A. Use Cases. 183

B. Tales From the Cryp^H^H^H^H Cloud. 187

viii | Table of Contents

C. Resources. 197

23. Glossary. 199

Table of Contents | ix

Acknowledgments

The OpenStack Foundation supported the creation of this book with plane tickets to
Austin, lodging (including one adventurous evening without power after a wind‐
storm), and delicious food. For about USD $10,000, we could collaborate intensively
for a week in the same room at the Rackspace Austin office. The authors are all mem‐
bers of the OpenStack Foundation, which you can join. Go to the Foundation web
site at http://openstack.org/join.

We want to acknowledge our excellent host Rackers at Rackspace in Austin:

• Emma Richards of Rackspace Guest Relations took excellent care of our lunch
orders and even set aside a pile of sticky notes that had fallen off the walls.

• Betsy Hagemeier, a Fanatical Executive Assistant, took care of a room reshuffle
and helped us settle in for the week.

• The Real Estate team at Rackspace in Austin, also known as “The Victors,” were
super responsive.

• Adam Powell in Racker IT supplied us with bandwidth each day and second
monitors for those of us needing more screens.

• On Wednesday night we had a fun happy hour with the Austin OpenStack Meet‐
up group and Racker Katie Schmidt took great care of our group.

We also had some excellent input from outside of the room. Tim Bell from CERN
gave us feedback on the outline before we started and reviewed it mid-week. Sébas‐
tien Han has written excellent blogs and generously gave his permission for re-use.
Oisin Feeley read it, made some edits, and provided emailed feedback right when we
asked.

Inside the book sprint room with us each day was our book sprint facilitator Adam
Hyde. Without his tireless support and encouragement, we would have thought a
book of this scope was impossible in five days. Adam has proven the book sprint

xi

https://www.openstack.org/join
https://www.openstack.org/join

method effectively again and again. He creates both tools and faith in collaborative
authoring at http://www.booksprints.net/.

We couldn’t have pulled it off without so much supportive help and encouragement.

xii | Acknowledgments

Document Change History
This version of the document replaces and obsoletes all previous versions. The fol‐
lowing table describes the most recent changes:

Revision Date Summary of Changes

2013-05-13 • Updated description of availability zones.

2013-04-02 • Fixes to ensure samples fit in page size and notes are formatted.

2013-03-22 • Stopped chunking in HTML output.

2013-03-20 • Editorial changes.

• Added glossterm tags to glossary terms.

• Cleaned up formatting in code examples.

• Removed future tense.

2013-03-11 • Moved files to OpenStack github repository.

Preface

OpenStack is an open source platform that lets you build an Infrastructure as a Ser‐
vice (IaaS) cloud that runs on commodity hardware.

Introduction to OpenStack
OpenStack believes in open source, open design, open development, all in an open
community so anyone can participate. The long-term vision for OpenStack is to pro‐
duce a ubiquitous open source cloud computing platform that meets the needs of
public and private cloud providers regardless of size. OpenStack services control large
pools of compute, storage, and networking resources throughout a data center.

Each service provides a REST API so that all these resources can be managed through
a dashboard that gives administrators control while empowering users to provision
resources through a web interface, through a command-line client, or through soft‐
ware development kits that support the API. Many OpenStack APIs are extensible,
meaning you can keep compatibility with a core set of calls while providing access to
more resources and innovating through API extensions. The OpenStack project is a
global collaboration of developers and cloud computing technologists producing the
open standard cloud computing platform for both public and private clouds. The
project aims to deliver solutions for all types of clouds by being simple to implement,
massively scalable, and feature-rich. The technology consists of a series of interrelated
projects delivering various components for a cloud infrastructure solution.

Okay, you say, OpenStack is open source cloud. Are there others? Yes, Eucalyptus of‐
fers an open source version of their private cloud offering that provides services com‐
patible with Amazon Web Services (AWS) APIs such as EC2 and S3. With Ubuntu
Server 11.10 release, OpenStack became supported by default rather than Eucalyptus
for Ubuntu Server releases. The product targets private cloud deployers who want to
maintain compatibility with Amazon Web Services by partnering with Amazon.
Apache CloudStack is another example of an open source cloud project, but it only
runs on Ubuntu 10.04. It offers computing as a core service, with connections to stor‐

xv

age services. Citrix purchased the project technology for $200 million in 2011 when
buying cloud.com, then released it to Apache in April 2012. The API compatibility
for CloudStack centers on AWS APIs.

OpenStack is designed for scalability, so you can easily add new compute and storage
resources to grow your cloud over time. Organizations such as HP and Rackspace
have built massive public clouds on top of OpenStack. OpenStack is more than a soft‐
ware package that you run as-is. It lets you integrate a number of different technolo‐
gies to construct a cloud. This approach provides great flexibility, but the number of
options might be bewildering at first.

Who This Book Is For
This guide assumes that you are familiar with the Ubuntu distribution of Linux, SQL
databases, and virtualization. You must be comfortable administering and configur‐
ing multiple Linux machines for networking. You must install and maintain a MySQL
database, and occasionally run SQL queries against it.

One of the most complex aspects of an OpenStack cloud is the networking configura‐
tion. You should be familiar with concepts such as DHCP, Linux bridges, VLANs, and
iptables. You must also have access to a network hardware expert who can configure
the switches and routers required in your OpenStack cloud.

This book is for those of you starting to run OpenStack clouds as well as those of you
who were handed a running one and want to keep it running well. Perhaps you’re on
a devops team, perhaps you are a system administrator starting to dabble in the
cloud, or maybe you want to get on that OpenStack cloud team at your company.
This book is for all of you.

How This Book Is Organized
This book is organized in two parts, the architecture decisions for designing Open‐
Stack clouds and the repeated operations for running OpenStack clouds.

Chapter 1: Provisioning and Deployment: While this book doesn’t describe installa‐
tion, we do recommend automation for deployment and configuration, discussed in
this chapter.

Chapter 2: Cloud Controller Design: The cloud controller is an invention for the sake
of consolidating and describing which services run on which nodes. The chapter dis‐
cusses hardware and network considerations as well as how to design the cloud con‐
troller for performance and separation of services.

Chapter 3: Scaling: This chapter discusses the growth of your cloud resources
through scaling and segregation considerations.

xvi | Preface

Chapter 4: Compute Nodes: This chapter describes the compute nodes, which are
dedicated to run virtual machines. Some hardware choices come into play here as
well as logging and networking descriptions.

Chapter 5: Storage Decisions: Along with other architecture decisions, storage con‐
cepts within OpenStack take a lot of consideration, and this chapter lays out the
choices for you.

Chapter 6: Network Design: Your OpenStack cloud networking needs to fit into your
existing networks while also enabling the best design for your users and administra‐
tors, and this chapter gives you in-depth information about networking decisions.

Chapter 7: Example Architecture: Because of all the decisions the previous chapters
discuss, this chapter describes the decisions made for this particular book and much
of the justification for the example architecture.

Chapter 8: Lay of the Land: This chapter is written to let you get your hands wrapped
around your OpenStack cloud through command line tools and understanding what
is already set up in your cloud.

Chapter 9: Managing Projects and Users: This chapter walks through those user-
enabling processes that all admins must face to manage users, give them quotas to
parcel out resources, and so on.

Chapter 10: User-facing Operations: This chapter moves along to show you how to
use OpenStack cloud resources and train your users as well.

Chapter 11: Maintenance, Failures, and Debugging: This chapter goes into the com‐
mon failures the authors have seen while running clouds in production, including
troubleshooting.

Chapter 12: Network Troubleshooting: Because network troubleshooting is especially
difficult with virtual resources, this chapter is chock-full of helpful tips and tricks to
tracing network traffic, finding the root cause of networking failures, and debugging
related services like DHCP and DNS.

Chapter 13: Logging and Monitoring: This chapter shows you where OpenStack
places logs and how to best to read and manage logs for monitoring purposes.

Chapter 14: Backup and Recovery: This chapter describes what you need to back up
within OpenStack as well as best practices for recovering backups.

Chapter 15: Customize: When you need to get a specialized feature into OpenStack,
this chapter describes how to use DevStack to write custom middleware or a custom
scheduler to rebalance your resources.

Chapter 16: Upstream OpenStack: Because OpenStack is so, well, open, this chapter is
dedicated to helping you navigate the community and find out where you can help
and where you can get help.

Preface | xvii

Chapter 17: Advanced Configuration: Much of OpenStack is driver-oriented, where
you can plug in different solutions to the base set of services. This chapter describes
some advanced configuration topics.

Appendix A: Use Cases: You can read a small selection of use cases from the Open‐
Stack community with some technical detail and further resources.

Appendix B: Tales From the Cryp^H^H^H^H Cloud: These are shared legendary
tales of image disappearances, VM massacres, and crazy troubleshooting techniques
to share those hard-learned lessons and wisdom.

Appendix C: Resources: So many OpenStack resources are available online due to the
fast-moving nature of the project, but there are also listed resources the authors
found helpful while learning themselves.

Glossary: A list of terms used in this book is included, which is a subset of the larger
OpenStack Glossary available online.

Why and How We Wrote This Book
We wrote this book because we have deployed and maintained OpenStack clouds for
at least a year, and wanted to be able to distribute this knowledge to others. After
months of being the point people for an OpenStack cloud, we also wanted to have a
document to hand to our system administrators so they’d know how to operate the
cloud on a daily basis — both reactively and proactively. We wanted to provide more
detailed technical information about the decisions that deployers make along the way.

We wrote this book to help you:

• Design and create an architecture for your first non-trivial OpenStack cloud. Af‐
ter you read this guide, you’ll know which questions to ask and how to organize
your compute, networking, storage resources, and the associated software pack‐
ages.

• Perform the day-to-day tasks required to administer a cloud.

We wrote this book in a Book Sprint, which is a facilitated rapid development pro‐
duction method for books. For more information see the Book Sprint site. Your
authors cobbled this book together in five days during February 2013, fueled by caf‐
feine and the best take-out food that Austin, Texas could offer.

On the first day we filled white boards with colorful sticky notes to start to shape this
nebulous book about how to architect and operate clouds.

xviii | Preface

http://www.booksprints.net

We wrote furiously from our own experiences and bounced ideas between each other.
At regular intervals we reviewed the shape and organization of the book and further
molded it, leading to what you see today.

The team includes:

• Tom Fifield. After learning about scalability in computing from particle physics
experiments like ATLAS at the LHC, Tom worked on OpenStack clouds in pro‐
duction to support the Australian public research sector. Tom currently serves as
an OpenStack community manager and works on OpenStack documentation in
his spare time.

• Diane Fleming. Diane works on the OpenStack API documentation tirelessly.
She helped out wherever she could on this project.

• Anne Gentle. Anne is the documentation coordinator for OpenStack and also
served as an individual contributor to the Google Doc Summit in 2011, working
with the Open Street Maps team. Anne has worked on doc sprints in the past
with FLOSS Manuals’ Adam Hyde facilitating. Anne lives in Austin, Texas.

• Lorin Hochstein. An academic turned software developer-slash-operator, Lorin
currently works as the Lead Architect for Cloud Services at Nimbis Services
where he deploys OpenStack for technical computing applications. He has been
working with OpenStack since the Cactus release. Previously, he worked on high-
performance computing extensions for OpenStack at University of Southern Cal‐
ifornia’s Information Sciences Institute (USC-ISI).

Preface | xix

• Adam Hyde. Adam facilitated this Book Sprint. He also founded the Book Sprint
methodology and is the most experienced Book Sprint facilitator around. See
http://www.booksprints.net/ for more information. Adam founded FLOSS
Manuals—a community of some 3,000 individuals developing Free Manuals
about Free Software. He is also the founder and project manager for Booktype,
an open source project for writing, editing, and publishing books online and in
print.

• Jonathan Proulx. Jon has been piloting an OpenStack cloud as a senior technical
architect at the MIT Computer Science and Artificial Intelligence Lab for his re‐
searchers to have as much computing power as they need. He started contribu‐
ting to OpenStack documentation and reviewing the documentation so that he
could accelerate his learning.

• Everett Toews. Everett is a Developer Advocate at Rackspace making OpenStack
and the Rackspace Cloud easy to use. Sometimes developer, sometimes advocate,
and sometimes operator. He’s built web applications, taught workshops, given
presentations around the world, and deployed OpenStack for production use by
academia and business.

• Joe Topjian. Joe has designed and deployed several clouds at Cybera, where, as a
non-profit, they are building e-infrastructure to support entrepreneurs and local
researchers in Alberta, Canada. He also actively maintains and operates these
clouds as a systems architect, and his experiences have generated a wealth of
troubleshooting skills for cloud environments.

How to Contribute to This Book
The genesis of this book was an in-person event, but now that the book is in your
hands we want you to contribute to it. OpenStack documentation follows the coding
principles of iterative work, with bug logging, investigating, and fixing. We also store
the source content on Github and invite collaborators through the OpenStack Gerrit
installation, which offers reviews. For the O’Reilly edition of this book, we are using
their Atlas system which also stores source content on Github and enables collabora‐
tion among contributors.

Learn more about how to contribute to the OpenStack docs at Documentation How
To (http://wiki.openstack.org/Documentation/HowTo).

If you find a bug and can’t fix it or aren’t sure it’s really a doc bug, log a bug at Open‐
Stack Manuals (http://bugs.launchpad.net/openstack-manuals). Tag the bug under
Extra options with ops-guide tag to indicate that the bug is in this guide. You can
assign the bug to yourself if you know how to fix it. Also, a member of the OpenStack
doc-core team can triage the doc bug.

xx | Preface

http://wiki.openstack.org/Documentation/HowTo
http://wiki.openstack.org/Documentation/HowTo
http://bugs.launchpad.net/openstack-manuals
http://bugs.launchpad.net/openstack-manuals

CHAPTER 1

Provisioning and Deployment

A critical part of a cloud’s scalability is the amount of effort that it takes to run your
cloud. To minimize the operational cost of running your cloud, set up and use an au‐
tomated deployment and configuration infrastructure.

This infrastructure includes systems to automatically install the operating system’s in‐
itial configuration and later coordinate the configuration of all services automatically
and centrally, which reduces both manual effort and chance for error.

Automated Deployment
An automated deployment system installs and configures operating systems on new
servers, without intervention, after the absolute minimum amount of manual work,
including physical racking, MAC to IP assignment, power configuration, and so on.
Typically solutions rely on wrappers around PXE boot and TFTP servers for the basic
operating system install, then hand off to an automated configuration management
system.

Ubuntu and Red Hat Linux both include mechanisms for configuring the operating
system, including preseed and kickstart, that you can use after a network boot. Typi‐
cally these are used to bootstrap an automated configuration system. Alternatively,
you can use an image-based approach for deploying the operating system, such as
systemimager. You can use both approaches with a virtualized infrastructure, such as
when you run VMs to separate your control services and physical infrastructure.

When you create a deployment plan, focus on a few vital areas because they are very
hard to modify post-deployment.

21

Disk Partitioning and RAID
At the very base of any operating system are the hard drives on which the OS is in‐
stalled.

You must complete the following configurations on the server’s hard drives:

• Partitioning
• Adding to a RAID array

The simplest option is to use one hard drive with two partitions:

• File system
• Swap space

RAID is not used in this setup.

This option is not recommended for production because if the hard
drive fails, that entire server is down. Instead, we recommend that
you use more than one disk. The number of disks determine what
types of RAID arrays to build.

We recommend that you choose one of the following multiple disk options:

• Option 1: Partition all drives in the same way in a horizontal fashion, as shown
in the following diagram:

With this option, you can assign different partitions to different RAID arrays.
You can allocate partition 1 of disk one and two to the /boot partition mirror.
You can make partition 2 of all disks the root partition mirror. You can use parti‐

22 | Chapter 1: Provisioning and Deployment

tion 3 of all disks for a cinder-volumes LVM partition running on a RAID 10
array.
While you might end up with unused partitions, such as partition 1 in disk three
and four of this example, it allows for maximum utilization off disk space. I/O
performance might be an issue due to all disks being used for all tasks.

• Option 2: Add all raw disks to one large RAID array, either hardware or software
based. You can partition this large array with the boot, root, swap, and LVM
areas. This option is simple to implement and uses all partitions. However, disk
I/O might suffer.

• Option 3: Dedicate entire disks to certain partitions. For example, you could al‐
locate disk one and two entirely to the boot, root, and swap partitions under a
RAID 1 mirror. Then, allocate disk 3 and 4 entirely to the LVM partition, also
under a RAID 1 mirror. Disk I/O should be better because I/O is focused on
dedicated tasks. However, the LVM partition is much smaller.

As with most architecture choices, the right answer depends on your environment.

Network Configuration
Network configuration is a very large topic that spans multiple areas of this book. For
now, make sure that your servers can PXE boot and successfully communicate with
the deployment server.

For example, you usually cannot configure NICs for VLANs when PXE booting. Ad‐
ditionally, you usually cannot PXE boot with bonded NICs. If you run into this sce‐
nario, consider using a simple 1 GB switch in a private network on which only your
cloud communicates.

Automated Configuration
The purpose of automatic configuration management is to establish and maintain the
consistency of a system with no human intervention. You want to maintain consis‐
tency in your deployments so you can have the same cloud every time, repeatably.
Proper use of automatic configuration management tools ensures that components of
the cloud systems are in particular states, in addition to simplifying deployment, and
configuration change propagation.

These tools also make it possible to test and roll back changes, as they are fully repeat‐
able. Conveniently, a large body of work has been done by the OpenStack community
in this space. Puppet – a configuration management tool – even provides official
modules for OpenStack.

Automated Configuration | 23

An integral part of a configuration management system is the items that it controls.
You should carefully consider all of the items that you want, or do not want, to be
automatically managed.

Remote Management
In our experience, most operators don’t sit right next to the servers running the
cloud, and many don’t necessarily enjoy visiting the data center. OpenStack should be
entirely remotely configurable, but sometimes not everything goes according to plan.

In this instance, having an out-of-band access into nodes running OpenStack compo‐
nents, is a boon. The IPMI protocol is the de-facto standard here, and acquiring
hardware that supports it is highly recommended to achieve that lights-out data cen‐
ter aim.

In addition, consider remote power control as well. While IPMI usually controls the
server’s power state, having remote access to the PDU that the server is plugged into
can really be useful for situations when everything seems wedged.

24 | Chapter 1: Provisioning and Deployment

CHAPTER 2

Cloud Controller Design

OpenStack is designed to be massively horizontally scalable, which allows all services
to be distributed widely. However, to simplify this guide we have decided to discuss
services of a more central nature using the concept of a single cloud controller.

For more details about the overall architecture, see the Chapter 7.

As described in this guide, the cloud controller is a single node that hosts the databa‐
ses, message queue service, authentication and authorization service, image manage‐
ment service, user dashboard, and API endpoints.

The cloud controller provides the central management system for multi-node Open‐
Stack deployments. Typically the cloud controller manages authentication and sends
messaging to all the systems through a message queue.

For our example, the cloud controller has a collection of nova-* components that
represent the global state of the cloud, talks to services such as authentication, main‐
tains information about the cloud in a database, communicates to all compute nodes
and storage workers through a queue, and provides API access. Each service running
on a designated cloud controller may be broken out into separate nodes for scalability
or availability.

Hardware Considerations
A cloud controller’s hardware can be the same as a compute node, though you may
want to further specify based on the size and type of cloud that you run.

It’s also possible to use virtual machines for all or some of the services that the cloud
controller manages, such as the message queuing. In this guide, we assume that all
services are running directly on the cloud controller.

25

To size the server correctly, and determine whether to virtualize any part of it, you
should estimate:

• The number of instances that you expect to run
• The number of compute nodes that you have
• The number of users who will access the compute or storage services
• Whether users interact with your cloud through the REST API or the dashboard
• Whether users authenticate against an external system (such as, LDAP or Active

Directory)
• How long you expect single instances to run

Consideration Ramification

How many instances will run at
once?

Size your database server accordingly, and scale out beyond one cloud
controller if many instances will report status at the same time and
scheduling where a new instance starts up needs computing power.

How many compute nodes will
run at once?

Ensure that your messaging queue handles requests successfully and
size accordingly.

How many users will access the
API?

If many users will make multiple requests, make sure that the CPU load
for the cloud controller can handle it.

How many users will access the
dashboard?

The dashboard makes many requests, even more than the API access, so
add even more CPU if your dashboard is the main interface for your
users.

How many nova-api services do
you run at once for your cloud?

You need to size the controller with a core per service.

How long does a single instance
run?

Starting instances and deleting instances is demanding on the compute
node but also demanding on the controller node because of all the API
queries and scheduling needs.

Does your authentication system
also verify externally?

Ensure network connectivity between the cloud controller and external
authentication system are good and that the cloud controller has the
CPU power to keep up with requests.

26 | Chapter 2: Cloud Controller Design

Separation of Services
While our example contains all central services in a single location, it is possible and
indeed often a good idea to separate services onto different physical servers. The fol‐
lowing is a list of deployment scenarios we’ve seen, and their justifications.

Run glance-*
servers on the
swift-proxy

server

This deployment felt the spare I/O on the Object Storage proxy server was sufficient,
and the Image Delivery portion of Glance benefited from being on physical hardware
and having good connectivity to the Object Storage back-end it was using.

Run a central
dedicated database
server

This deployment made a central dedicated server to provide the databases for all
services. This simplified operations by isolating database server updates, and allowed
for the simple creation of slave database servers for failover.

Run one VM per
service

This deployment ran central services on a set of servers running KVM. A dedicated VM
was created for each service (nova-scheduler, rabbitmq, database etc). This assisted
the deployment with scaling as they could tune the resources given to each virtual
machine based on the load they received (something that was not well understood
during installation).

Use an external
load balancer

This deployment had an expensive hardware load balancer in their organisation. They
ran multiple nova-api and swift-proxy servers on different physical servers and
used the load balancer to switch between them.

One choice that always comes up is whether to virtualize or not. Some services, such
as nova-compute, swift-proxy and swift-object servers, should not be virtualized.
However, control servers can often be happily virtualized - the performance penalty
can usually be offset by simply running more of the service.

Database
Most OpenStack Compute central services, and currently also the nova-compute no‐
des, use the database for stateful information. Loss of this ability leads to errors. As a
result, we recommend that you cluster your databases in some way to make them fail‐
ure tolerant.

Message Queue
Most OpenStack Compute services communicate with each other using the Message
Queue. In general, if the message queue fails or becomes inaccessible, the cluster
grinds to a halt and ends up in a “read only” state, with information stuck at the point

Separation of Services | 27

where the last message was sent. Accordingly, we recommend that you cluster the
message queue - and RabbitMQ has in-build abilities to do this.

Application Programming Interface (API)
All public access, whether direct, through a command line client, or through the web-
based dashboard, uses the API service. Find the API reference at http://api.open‐
stack.org/.

You must choose whether you want to support the Amazon EC2 compatibility APIs,
or just the OpenStack APIs. One issue you might encounter when running both APIs
is an inconsistent experience when referring to images and instances.

For example, the EC2 API refers to instances using IDs that contain hexadecimal
whereas the OpenStack API uses names and digits. Similarly, the EC2 API tends to
rely on DNS aliases for contacting virtual machines, as opposed to OpenStack which
typically lists IP addresses.

If OpenStack is not set up in the right way, it is simple to have scenarios where users
are unable to contact their instances due to only having an incorrect DNS alias. De‐
spite this, EC2 compatibility can assist users migrating to your cloud.

Like databases and message queues, having more than one API server is a good thing.
Traditional HTTP load balancing techniques can be used to achieve a highly available
nova-api service.

Extensions
The API Specifications (http://docs.openstack.org/api/api-specs.html) define the core
actions, capabilities, and media-types of the OpenStack API. A client can always de‐
pend on the availability of this core API and implementers are always required to
support it in its entirety. Requiring strict adherence to the core API allows clients to
rely upon a minimal level of functionality when interacting with multiple implemen‐
tations of the same API.

The OpenStack Compute API is extensible. An extension adds capabilities to an API
beyond those defined in the core. The introduction of new features, MIME types, ac‐
tions, states, headers, parameters, and resources can all be accomplished by means of
extensions to the core API. This allows the introduction of new features in the API
without requiring a version change and allows the introduction of vendor-specific ni‐
che functionality.

28 | Chapter 2: Cloud Controller Design

http://api.openstack.org/
http://api.openstack.org/
http://docs.openstack.org/api/api-specs.html

Scheduler
Fitting various sized virtual machines (different flavors) into different sized physical
nova-compute nodes is a challenging problem - researched generically in Computer
Science as a packing problem.

You can use various techniques to handle this problem, one of which is to have flavor
sizes scale linearly, be a proportional fraction of your physical node capacity, though
solving this problem is out of the scope of this book. To support your scheduling
choices, OpenStack Compute provides several different types of scheduling drivers, a
full discussion of which is found in the reference manual (http://docs.openstack.org/
folsom/openstack-compute/admin/content/ch_scheduling.html).

For availability purposes, or for very large or high-schedule frequency installations,
you should consider running multiple nova-scheduler services. No special load bal‐
ancing is required, as the nova-scheduler communicates entirely using the message
queue.

Images
The OpenStack Image Catalog and Delivery service consists of two parts - glance-
api and glance-registry. The former is responsible for the delivery of images and
the compute node uses it to download images from the back-end. The latter main‐
tains the metadata information associated with virtual machine images and requires a
database.

The glance-api part is an abstraction layer that allows a choice of back-end. Cur‐
rently, it supports:

• OpenStack Object Storage. Allows you to store images as objects.
• File system. Uses any traditional file system to store the images as files.
• S3. Allows you to fetch images from Amazon S3.
• HTTP. Allows you to fetch images from a web server. You cannot write images by

using this mode.

If you have an OpenStack Object Storage service, we recommend using this as a scal‐
able place to store your images. You can also use a file system with sufficient perfor‐
mance or Amazon S3 - unless you do not need the ability to upload new images
through OpenStack.

Scheduler | 29

http://docs.openstack.org/folsom/openstack-compute/admin/content/ch_scheduling.html

Dashboard
The OpenStack Dashboard is implemented as a Python web application that runs in
Apache httpd. Therefore, you may treat it the same as any other web application,
provided it can reach the API servers (including their admin endpoints) over the net‐
work.

Authentication and Authorization
The concepts supporting OpenStack’s authentication and authorization are derived
from well understood and widely used systems of a similar nature. Users have creden‐
tials they can use to authenticate, and they can be a member of one or more groups
(known as projects or tenants interchangeably).

For example, a cloud administrator might be able to list all instances in the cloud,
whereas a user can only see those in their current group. Resources quotas, such as
the number of cores that can be used, disk space, and so on, are associated with a
project.

The OpenStack Identity Service (Keystone) is the point that provides the authentica‐
tion decisions and user attribute information, which is then used by the other Open‐
Stack services to perform authorization. Policy is set in the policy.json file. For infor‐
mation on how to configure these, see Chapter 9.

The Identity Service supports different plugins for back-end authentication decisions,
and storing information. These range from pure storage choices to external systems
and currently include:

• In-memory Key-Value Store
• SQL database
• PAM
• LDAP

Many deployments use the SQL database, however LDAP is also a popular choice for
those with existing authentication infrastructure that needs to be integrated.

Network Considerations
Because the cloud controller handles so many different services, it must be able to
handle the amount of traffic that hits it. For example, if you choose to host the Open‐
Stack Imaging Service on the cloud controller, the cloud controller should be able to
support the transferring of the images at an acceptable speed.

30 | Chapter 2: Cloud Controller Design

As another example, if you choose to use single-host networking where the cloud
controller is the network gateway for all instances, then the Cloud Controller must
support the total amount of traffic that travels between your cloud and the public In‐
ternet.

We recommend that you use a fast NIC, such as 10 GB. You can also choose to use
two 10 GB NICs and bond them together. While you might not be able to get a full
bonded 20 GB speed, different transmission streams use different NICs. For example,
if the Cloud Controller transfers two images, each image uses a different NIC and
gets a full 10 GB of bandwidth.

Network Considerations | 31

CHAPTER 3

Scaling

If your cloud is successful, eventually you must add resources to meet the increasing
demand. OpenStack is designed to be horizontally scalable. Rather than switching to
larger servers, you procure more servers. Ideally, you scale out and load balance
among functionally-identical services.

The Starting Point
Determining the scalability of your cloud and how to improve it is an exercise with
many variables to balance. No one solution meets everyone’s scalability aims. Howev‐
er, it is helpful to track a number of metrics.

The starting point for most is the core count of your cloud. By applying some ratios,
you can gather information about the number of virtual machines (VMs) you expect
to run ((overcommit fraction × cores) / virtual cores per instance), how
much storage is required (flavor disk size × number of instances). You can
use these ratios to determine how much additional infrastructure you need to sup‐
port your cloud.

The default OpenStack flavors are:

33

Name Virtual cores Memory Disk Ephemeral

m1.tiny 1 512 MB 1 GB 0 GB

m1.small 1 2 GB 10 GB 20 GB

m1.medium 2 4 GB 10 GB 40 GB

m1.large 4 8 GB 10 GB 80 GB

m1.xlarge 8 16 GB 10 GB 160 GB

Assume that the following set-up supports (200 / 2) × 16 = 1600 VM instances and
requires 80 TB of storage for /var/lib/nova/instances:

• 200 physical cores
• Most instances are size m1.medium (2 virtual cores, 50 GB of storage)
• Default CPU over-commit ratio (cpu_allocation_ratio in nova.conf) of 16:1

However, you need more than the core count alone to estimate the load that the API
services, database servers, and queue servers are likely to encounter. You must also
consider the usage patterns of your cloud.

As a specific example, compare a cloud that supports a managed web hosting plat‐
form with one running integration tests for a development project that creates one
VM per code commit. In the former, the heavy work of creating a VM happens only
every few months, whereas the latter puts constant heavy load on the cloud controller.
You must consider your average VM lifetime, as a larger number generally means less
load on the cloud controller.

Aside from the creation and termination of VMs, you must consider the impact of
users accessing the service — particularly on nova-api and its associated database.
Listing instances garners a great deal of information and, given the frequency with
which users run this operation, a cloud with a large number of users can increase the
load significantly. This can even occur without their knowledge — leaving the Open‐
Stack Dashboard instances tab open in the browser refreshes the list of VMs every 30
seconds.

After you consider these factors, you can determine how many cloud controller cores
you require. A typical 8 core, 8 GB of RAM server is sufficient for up to a rack of
compute nodes — given the above caveats.

You must also consider key hardware specifications for the performance of user VMs.
You must consider both budget and performance needs. Examples include: Storage

34 | Chapter 3: Scaling

performance (spindles/core), memory availability (RAM/core), network bandwidth
(Gbps/core), and overall CPU performance (CPU/core).

For which metrics to track to determine how to scale your cloud, see Chapter 13.

Adding Controller Nodes
You can facilitate the horizontal expansion of your cloud by adding nodes. Adding
compute nodes is straightforward — they are easily picked up by the existing installa‐
tion. However, you must consider some important points when you design your clus‐
ter to be highly available.

Recall that a cloud controller node runs several different services. You can install
services that communicate only using the message queue internally — nova-
scheduler and nova-console — on a new server for expansion. However, other inte‐
gral parts require more care.

You should load balance user-facing services such as Dashboard, nova-api or the Ob‐
ject Storage proxy. Use any standard HTTP load balancing method (DNS round rob‐
in, hardware load balancer, software like Pound or HAProxy). One caveat with Dash‐
board is the VNC proxy, which uses the WebSocket protocol — something that a L7
load balancer might struggle with. See also Horizon session storage (http://
docs.openstack.org/developer/horizon/topics/deployment.html#session-storage).

You can configure some services, such as nova-api and glance-api, to use multiple
processes by changing a flag in their configuration file — allowing them to share
work between multiple cores on the one machine.

Several options are available for MySQL load balancing, and RabbitMQ has in-built
clustering support. Information on how to configure these and many of the other
services can be found in the Operations Section.

Segregating Your Cloud
Use one of the following OpenStack methods to segregate your cloud: cells, regions,
zones and host aggregates. Each method provides different functionality, as described
in the following table:

Adding Controller Nodes | 35

http://docs.openstack.org/developer/horizon/topics/deployment.html#session-storage

Cells Regions Availability Zones Host Aggregates

Use when
you need

A single API endpoint
for compute, or you
require a second level
of scheduling.

Discrete regions with
separate API
endpoints and no
coordination between
regions.

Logical separation
within your nova
deployment for
physical isolation or
redundancy.

To schedule a group
of hosts with
common features.

Example A cloud with multiple
sites where you can
schedule VMs
“anywhere” or on a
particular site.

A cloud with multiple
sites, where you
schedule VMs to a
particular site and you
want a shared
infrastructure.

A single site cloud
with equipment fed
by separate power
supplies.

Scheduling to hosts
with trusted
hardware support.

Overhead
• A new service,
nova-cells

• Each cell has a
full nova
installation
except nova-
api

• A different API
endpoint for
every region.

• Each region has
a full nova
installation.

• Configuration
changes to
nova.conf

• Configuration
changes to
nova.conf

Shared
services

Keystone

nova-api

Keystone Keystone

All nova services

Keystone

All nova services

This array of options can be best divided into two — those which result in running
separate nova deployments (cells and regions), and those which merely divide a sin‐
gle deployment (availability zones and host aggregates).

Cells and Regions
OpenStack Compute cells are designed to allow running the cloud in a distributed
fashion without having to use more complicated technologies, or being invasive to
existing nova installations. Hosts in a cloud are partitioned into groups called cells.
Cells are configured in a tree. The top-level cell (“API cell”) has a host that runs the
nova-api service, but no nova-compute services. Each child cell runs all of the other
typical nova-* services found in a regular installation, except for the nova-api ser‐
vice. Each cell has its own message queue and database service, and also runs nova-
cells — which manages the communication between the API cell and child cells.

36 | Chapter 3: Scaling

This allows for a single API server being used to control access to multiple cloud in‐
stallations. Introducing a second level of scheduling (the cell selection), in addition to
the regular nova-scheduler selection of hosts, provides greater flexibility to control
where virtual machines are run.

Contrast this with regions. Regions have a separate API endpoint per installation, al‐
lowing for a more discrete separation. Users wishing to run instances across sites
have to explicitly select a region. However, the additional complexity of a running a
new service is not required.

The OpenStack Dashboard (Horizon) currently only uses a single region, so one
dashboard service should be run per region. Regions are a robust way to share some
infrastructure between OpenStack Compute installations, while allowing for a high
degree of failure tolerance.

Availability Zones and Host Aggregates
You can use availability zones, host aggregates, or both to partition a nova deploy‐
ment.

Availability zones are implemented through and configured in a similar way to host
aggregates.

However, you use an availability zone and a host aggregate for different reasons:

• Availability zone. Enables you to arrange OpenStack Compute hosts into logical
groups, and provides a form of physical isolation and redundancy from other
availability zones, such as by using separate power supply or network equipment.
You define the availability zone in which a specified Compute host resides locally
on each server. An availability zone is commonly used to identify a set of servers
that have a common attribute. For instance, if some of the racks in your data cen‐
ter are on a separate power source, you can put servers in those racks in their
own availability zone. Availability zones can also help separate different classes of
hardware.
When users provision resources, they can specify from which availability zone
they would like their instance to be built. This allows cloud consumers to ensure
that their application resources are spread across disparate machines to achieve
high availability in the event of hardware failure.

• Host aggregate. Enables you to partition OpenStack Compute deployments into
logical groups for load balancing and instance distribution. You can use host ag‐
gregates to further partition an availability zone. For example, you might use host
aggregates to partition an availability zone into groups of hosts that either share
common resources, such as storage and network, or have a special property, such
as trusted computing hardware.

Segregating Your Cloud | 37

A common use of host aggregates is to provide information for use with the
nova-scheduler. For example, you might use a host aggregate to group a set of
hosts that share specific flavors or images.

Previously, all services had an availability zone. Currently, only the
nova-compute service has its own availability zone. Services such as
nova-scheduler, nova-network, nova-conductor have always span‐
ned all availability zones.
When you run any of the following operations, the services appear in
their own internal availability zone (CONF.internal_service_availa‐
bility_zone):

• nova host-list (os-hosts)
• euca-describe-availability-zones verbose
• nova-manage service list

The internal availability zone is hidden in euca-describe-
availability_zones (non-verbose).
CONF.node_availability_zone has been renamed to CONF.de‐
fault_availability_zone and is only used by the nova-api and nova-
scheduler services.
CONF.node_availability_zone still works but is deprecated.

Scalable Hardware
While several resources already exist to help with deploying and installing Open‐
Stack, it’s very important to make sure you have your deployment planned out ahead
of time. This guide expects at least a rack has been set aside for the OpenStack cloud
but also offers suggestions for when and what to scale.

Hardware Procurement
“The Cloud” has been described as a volatile environment where servers can be cre‐
ated and terminated at will. While this may be true, it does not mean that your
servers must be volatile. Ensuring your cloud’s hardware is stable and configured cor‐
rectly means your cloud environment remains up and running. Basically, put effort
into creating a stable hardware environment so you can host a cloud that users may
treat as unstable and volatile.

OpenStack can be deployed on any hardware supported by an OpenStack-compatible
Linux distribution, such as Ubuntu 12.04 as used in this books’ reference architec‐
ture.

38 | Chapter 3: Scaling

Hardware does not have to be consistent, but should at least have the same type of
CPU to support instance migration.

The typical hardware recommended for use with OpenStack is the standard value-
for-money offerings that most hardware vendors stock. It should be straightforward
to divide your procurement into building blocks such as “compute,” “object storage,”
and “cloud controller,” and request as many of these as desired. Alternately should
you be unable to spend more, if you have existing servers, provided they meet your
performance requirements and virtualization technology, these are quite likely to be
able to support OpenStack.

Capacity Planning
OpenStack is designed to increase in size in a straightforward manner. Taking into
account the considerations in the Scalability chapter — particularly on the sizing of
the cloud controller — it should be possible to procure additional compute or object
storage nodes as needed. New nodes do not need to be the same specification, or even
vendor, as existing nodes.

For compute nodes, nova-scheduler will take care of differences in sizing to do with
core count and RAM amounts, however you should consider the user experience
changes with differing CPU speeds. When adding object storage nodes, a weight
should be specified that reflects the capability of the node.

Monitoring the resource usage and user growth will enable you to know when to pro‐
cure. The Monitoring chapter details some useful metrics.

Burn-in Testing
Server hardware’s chance of failure is high at the start and the end of its life. As a re‐
sult, much effort in dealing with hardware failures while in production can be avoi‐
ded by appropriate burn-in testing to attempt to trigger the early-stage failures. The
general principle is to stress the hardware to its limits. Examples of burn-in tests in‐
clude running a CPU or disk benchmark for several days.

Scalable Hardware | 39

CHAPTER 4

Compute Nodes

Compute nodes form the resource core of the OpenStack Compute cloud, providing
the processing, memory, network and storage resources to run instances.

CPU Choice
The type of CPU in your compute node is a very important choice. First, ensure the
CPU supports virtualization by way of VT-x for Intel chips and AMD-v for AMD
chips.

The number of cores that the CPU has also affects the decision. It’s common for cur‐
rent CPUs to have up to 12 cores. Additionally, if the CPU supports Hyper-threading,
those 12 cores are doubled to 24 cores. If you purchase a server that supports multiple
CPUs, the number of cores is further multiplied.

Whether you should enable hyper-threading on your CPUs depends upon your use
case. We recommend you do performance testing with your local workload with both
hyper-threading on and off to determine what is more appropriate in your case.

Hypervisor Choice
OpenStack Compute supports many hypervisors to various degrees, including KVM,
LXC, QEMU, UML, VMWare ESX/ESXi, Xen, PowerVM, Hyper-V.

Probably the most important factor in your choice of hypervisor is your current usage
or experience. Aside from that, there are practical concerns to do with feature parity,
documentation, and the level of community experience.

For example, KVM is the most widely adopted hypervisor in the OpenStack commu‐
nity. Besides KVM, more deployments exist running Xen, LXC, VMWare and Hyper-

41

http://www.linux-kvm.org/page/Main_Page
http://lxc.sourceforge.net/
http://wiki.qemu.org/Manual
http://user-mode-linux.sourceforge.net/
http://www.vmware.com/products/vsphere-hypervisor/support.html
http://www.xen.org
http://www-03.ibm.com/systems/power/software/virtualization/features.html
http://www.microsoft.com/en-us/server-cloud/windows-server/server-virtualization-features.aspx

V than the others listed — however, each of these are lacking some feature support or
the documentation on how to use them with OpenStack is out of date.

The best information available to support your choice is found on the Hypervisor
Support Matrix (https://wiki.openstack.org/wiki/HypervisorSupportMatrix), and in
the configuration reference (http://docs.openstack.org/trunk/config-reference/
content/section_compute-hypervisors.html).

It is also possible to run multiple hypervisors in a single deployment
using Host Aggregates or Cells. However, an individual compute
node can only run a single hypervisor at a time.

Instance Storage Solutions
As part of the procurement for a compute cluster, you must specify some storage for
the disk on which the instantiated instance runs. There are three main approaches to
providing this temporary-style storage, and it is important to understand the implica‐
tions of the choice.

They are:

• Off compute node storage – shared file system
• On compute node storage – shared file system
• On compute node storage – non-shared file system

In general, the questions you should be asking when selecting the storage are as fol‐
lows:

• What is the platter count you can achieve?
• Do more spindles result in better I/O despite network access?
• Which one results in the best cost-performance scenario you’re aiming for?
• How do you manage the storage operationally?

Off Compute Node Storage – Shared File System
Many operators use separate compute and storage hosts. Compute services and stor‐
age services have different requirements, compute hosts typically require more CPU
and RAM than storage hosts. Therefore, for a fixed budget, it makes sense to have
different configurations for your compute nodes and your storage nodes with com‐
pute nodes invested in CPU and RAM, and storage nodes invested in block storage.

42 | Chapter 4: Compute Nodes

https://wiki.openstack.org/wiki/HypervisorSupportMatrix
https://wiki.openstack.org/wiki/HypervisorSupportMatrix
http://docs.openstack.org/trunk/config-reference/content/section_compute-hypervisors.html

Also, if you use separate compute and storage hosts then you can treat your compute
hosts as “stateless”. This simplifies maintenance for the compute hosts. As long as you
don’t have any instances currently running on a compute host, you can take it offline
or wipe it completely without having any effect on the rest of your cloud.

However, if you are more restricted in the number of physical hosts you have avail‐
able for creating your cloud and you want to be able to dedicate as many of your
hosts as possible to running instances, it makes sense to run compute and storage on
the same machines.

In this option, the disks storing the running instances are hosted in servers outside of
the compute nodes. There are also several advantages to this approach:

• If a compute node fails, instances are usually easily recoverable.
• Running a dedicated storage system can be operationally simpler.
• Being able to scale to any number of spindles.
• It may be possible to share the external storage for other purposes.

The main downsides to this approach are:

• Depending on design, heavy I/O usage from some instances can affect unrelated
instances.

• Use of the network can decrease performance.

On Compute Node Storage – Shared File System
In this option, each nova-compute node is specified with a significant amount of
disks, but a distributed file system ties the disks from each compute node into a single
mount. The main advantage of this option is that it scales to external storage when
you require additional storage.

However, this option has several downsides:

• Running a distributed file system can make you lose your data locality compared
with non-shared storage.

• Recovery of instances is complicated by depending on multiple hosts.
• The chassis size of the compute node can limit the number of spindles able to be

used in a compute node.
• Use of the network can decrease performance.

Instance Storage Solutions | 43

On Compute Node Storage – Non-shared File System
In this option, each nova-compute node is specified with enough disks to store the
instances it hosts. There are two main reasons why this is a good idea:

• Heavy I/O usage on one compute node does not affect instances on other com‐
pute nodes.

• Direct I/O access can increase performance.

This has several downsides:

• If a compute node fails, the instances running on that node are lost.
• The chassis size of the compute node can limit the number of spindles able to be

used in a compute node.
• Migrations of instances from one node to another are more complicated, and rely

on features which may not continue to be developed.
• If additional storage is required, this option does not to scale.

Issues with Live Migration
We consider live migration an integral part of the operations of the cloud. This fea‐
ture provides the ability to seamlessly move instances from one physical host to an‐
other, a necessity for performing upgrades that require reboots of the compute hosts,
but only works well with shared storage.

Live migration can be also done with non-shared storage, using a feature known as
KVM live block migration. While an earlier implementation of block-based migration
in KVM and QEMU was considered unreliable, there is a newer, more reliable imple‐
mentation of block-based live migration as of QEMU 1.4 and libvirt 1.0.2 that is also
compatible with OpenStack. However, none of the authors of this guide have first-
hand experience using live block migration.

Choice of File System
If you want to support shared storage live migration, you’ll need to configure a dis‐
tributed file system.

Possible options include:

• NFS (default for Linux)
• GlusterFS
• MooseFS

44 | Chapter 4: Compute Nodes

• Lustre

We’ve seen deployments with all, and recommend you choose the one you are most
familiar with operating.

Overcommitting
OpenStack allows you to overcommit CPU and RAM on compute nodes. This allows
you to increase the number of instances you can have running on your cloud, at the
cost of reducing the performance of the instances. OpenStack Compute uses the fol‐
lowing ratios by default:

• CPU allocation ratio: 16
• RAM allocation ratio: 1.5

The default CPU allocation ratio of 16 means that the scheduler allocates up to 16
virtual cores on a node per physical core. For example, if a physical node has 12 cores,
the scheduler allocates up to 192 virtual cores to instances (such as, 48 instances, in
the case where each instance has 4 virtual cores).

Similarly, the default RAM allocation ratio of 1.5 means that the scheduler allocates
instances to a physical node as long as the total amount of RAM associated with the
instances is less than 1.5 times the amount of RAM available on the physical node.

For example, if a physical node has 48 GB of RAM, the scheduler allocates instances
to that node until the sum of the RAM associated with the instances reaches 72 GB
(such as nine instances, in the case where each instance has 8 GB of RAM).

You must select the appropriate CPU and RAM allocation ratio for your particular
use case.

Logging
Logging is detailed more fully in the section called “Logging”. However it is an im‐
portant design consideration to take into account before commencing operations of
your cloud.

OpenStack produces a great deal of useful logging information, however, in order for
it to be useful for operations purposes you should consider having a central logging
server to send logs to, and a log parsing/analysis system (such as logstash).

Networking
Networking in OpenStack is a complex, multi-faceted challenge. See Chapter 6.

Overcommitting | 45

CHAPTER 5

Storage Decisions

Storage is found in many parts of the OpenStack stack, and the differing types can
cause confusion to even experienced cloud engineers. This section focuses on persis‐
tent storage options you can configure with your cloud.

OpenStack Storage Concepts
Ephemeral storage Block storage Object storage

Used to… Run operating system and
scratch space

Add additional persistent
storage to a virtual machine
(VM)

Store data, including
VM images

Accessed
through…

A file system A block device that can be
partitioned, formatted and
mounted (such as, /dev/vdc)

REST API

Accessible
from…

Within a VM Within a VM Anywhere

Managed by… OpenStack Compute (Nova) OpenStack Block Storage
(Cinder)

OpenStack Object
Storage (Swift)

Persists until… VM is terminated Deleted by user Deleted by user

47

Ephemeral storage Block storage Object storage

Sizing determined
by…

Administrator configures
size settings, known as
flavors

Specified by user in initial
request

Amount of available
physical storage

Example of typical
usage…

10 GB first disk, 30GB
second disk

1 TB disk 10s of TBs of dataset
storage

If you only deploy the OpenStack Compute Service (nova), your users do not have
access to any form of persistent storage by default. The disks associated with VMs are
“ephemeral”, meaning that (from the user’s point of view) they effectively disappear
when a virtual machine is terminated. You must identify what type of persistent stor‐
age you want to support for your users.

Today, OpenStack clouds explicitly support two types of persistent storage: object
storage and block storage.

Object Storage
With object storage, users access binary objects through a REST API. You may be fa‐
miliar with Amazon S3, which is a well-known example of an object storage system.
If your intended users need to archive or manage large datasets, you want to provide
them with object storage. In addition, OpenStack can store your virtual machine
(VM) images inside of an object storage system, as an alternative to storing the im‐
ages on a file system.

Block Storage
Block storage (sometimes referred to as volume storage) exposes a block device to the
user. Users interact with block storage by attaching volumes to their running VM in‐
stances.

These volumes are persistent: they can be detached from one instance and re-
attached to another, and the data remains intact. Block storage is implemented in
OpenStack by the OpenStack Block Storage (Cinder) project, which supports multi‐
ple back-ends in the form of drivers. Your choice of a storage back-end must be sup‐
ported by a Block Storage driver.

Most block storage drivers allow the instance to have direct access to the underlying
storage hardware’s block device. This helps increase the overall read/write IO.

Experimental support for utilizing files as volumes began in the Folsom release. This
initially started as a reference driver for using NFS with Cinder. By Grizzly’s release,
this has expanded into a full NFS driver as well as a GlusterFS driver.

48 | Chapter 5: Storage Decisions

These drivers work a little differently than a traditional “block” storage driver. On an
NFS or GlusterFS file system, a single file is created and then mapped as a “virtual”
volume into the instance. This mapping/translation is similar to how OpenStack uti‐
lizes QEMU’s file-based virtual machines stored in /var/lib/nova/instances.

File-level Storage
With file-level storage, users access stored data using the operating system’s file sys‐
tem interface. Most users, if they have used a network storage solution before, have
encountered this form of networked storage. In the Unix world, the most common
form of this is NFS. In the Windows world, the most common form is called CIFS
(previously, SMB).

OpenStack clouds do not present file-level storage to end users. However, it is impor‐
tant to consider file-level storage for storing instances under /var/lib/nova/instan
ces when designing your cloud, since you must have a shared file system if you wish
to support live migration.

Choosing Storage Back-ends
In general, when you select storage back-ends, ask the following questions:

• Do my users need block storage?
• Do my users need object storage?
• Do I need to support live migration?
• Should my persistent storage drives be contained in my compute nodes, or

should I use external storage?
• What is the platter count I can achieve? Do more spindles result in better I/O de‐

spite network access?
• Which one results in the best cost-performance scenario I’m aiming for?
• How do I manage the storage operationally?
• How redundant and distributed is the storage? What happens if a storage node

fails? To what extent can it mitigate my data-loss disaster scenarios?

To deploy your storage by using entirely commodity hardware, you can use a number
of open-source packages, as shown in the following table:

Choosing Storage Back-ends | 49

 Object Block File-level* (live migration support)

Swift

LVM

Ceph experimental

Gluster

NFS

ZFS

Sheepdog experimental

* This list of open-source file-level shared storage solutions is not exhaustive, other
open source solutions exist (MooseFS). Your organization may already have deployed
a file-level shared storage solution which you can use.

In addition to the open-source technologies, there are a number of proprietary solu‐
tions that are officially supported by OpenStack Block Storage. They are offered by
the following vendors:

• IBM (Storwize family/SVC, XIV)
• NetApp
• Nexenta
• SolidFire

You can find a matrix of the functionality provided by all of the supported Block
Storage drivers on the OpenStack wiki (https://wiki.openstack.org/wiki/CinderSup‐
portMatrix).

Also, you need to decide whether you want to support object storage in your cloud.
The two common use cases for providing object storage in a compute cloud are:

• To provide users with a persistent storage mechanism
• As a scalable, reliable data store for virtual machine images

50 | Chapter 5: Storage Decisions

https://wiki.openstack.org/wiki/CinderSupportMatrix

Commodity Storage Back-end Technologies
This section provides a high-level overview of the differences among the different
commodity storage back-end technologies.

• OpenStack Object Storage (Swift). The official OpenStack Object Store imple‐
mentation. It is a mature technology that has been used for several years in pro‐
duction by Rackspace as the technology behind Rackspace Cloud Files. As it is
highly scalable, it is well-suited to managing petabytes of storage. OpenStack Ob‐
ject Storage’s advantages are better integration with OpenStack (integrates with
OpenStack Identity, works with OpenStack Dashboard interface), and better sup‐
port for multiple data center deployment through support of asynchronous even‐
tual consistency replication.
Therefore, if you eventually plan on distributing your storage cluster across mul‐
tiple data centers, if you need unified accounts for your users for both compute
and object storage, or if you want to control your object storage with the Open‐
Stack dashboard, you should consider OpenStack Object Storage. More detail
can be found about OpenStack Object Storage in the section below.

• Ceph. A scalable storage solution that replicates data across commodity storage
nodes. Ceph was originally developed by one of the founders of DreamHost and
is currently used in production there.
Ceph was designed to expose different types of storage interfaces to the end-user:
it supports object storage, block storage, and file system interfaces, although the
file system interface is not yet considered production-ready. Ceph supports the
same API as Swift for object storage, can be used as a back-end for Cinder block
storage, as well as back-end storage for Glance images. Ceph supports “thin pro‐
visioning”, implemented using copy-on-write.
This can be useful when booting from volume because a new volume can be pro‐
visioned very quickly. Ceph also supports keystone-based authentication (as of
version 0.56), so it can be a seamless swap in for the default OpenStack Swift im‐
plementation.
Ceph’s advantages are that it gives the administrator more fine-grained control
over data distribution and replication strategies, enables you to consolidate your
object and block storage, enables very fast provisioning of boot-from-volume in‐
stances using thin provisioning, and supports a distributed file system interface,
though this interface is not yet recommended (http://ceph.com/docs/master/
faq/) for use in production deployment by the Ceph project.
If you wish to manage your object and block storage within a single system, or if
you wish to support fast boot-from-volume, you should consider Ceph.

• Gluster. A distributed, shared file system. As of Gluster version 3.3, you can use
Gluster to consolidate your object storage and file storage into one unified file

Choosing Storage Back-ends | 51

http://ceph.com/docs/master/faq/

and object storage solution, which is called Gluster UFO. Gluster UFO uses a
customizes version of Swift that uses Gluster as the back-end.
The main advantage of using Gluster UFO over regular Swift is if you also want
to support a distributed file system, either to support shared storage live migra‐
tion or to provide it as a separate service to your end-users. If you wish to man‐
age your object and file storage within a single system, you should consider Glus‐
ter UFO.
LVM. The Logical Volume Manager, a Linux-based system that provides an ab‐
straction layer on top of physical disks to expose logical volumes to the operating
system. The LVM (Logical Volume Manager) back-end implements block storage
as LVM logical partitions.
On each host that will house block storage, an administrator must initially create
a volume group dedicated to Block Storage volumes. Blocks are created from
LVM logical volumes.

LVM does not provide any replication. Typically, administrators
configure RAID on nodes that use LVM as block storage to pro‐
tect against failures of individual hard drives. However, RAID
does not protect against a failure of the entire host.

The Solaris iSCSI driver for OpenStack Block Storage implements blocks as ZFS
entities. ZFS is a file system that also has functionality of a volume manager. This
is unlike on a Linux system, where there is a separation of volume manager
(LVM) and file system (such as, ext3, ext4, xfs, btrfs). ZFS has a number of ad‐
vantages over ext4, including improved data integrity checking.
The ZFS back-end for OpenStack Block Storage only supports Solaris-based sys‐
tems such as Illumos. While there is a Linux port of ZFS, it is not included in any
of the standard Linux distributions, and it has not been tested with OpenStack
Block Storage. As with LVM, ZFS does not provide replication across hosts on its
own, you need to add a replication solution on top of ZFS if your cloud needs to
be able to handle storage node failures.
We don’t recommend ZFS unless you have previous experience with deploying it,
since the ZFS back-end for Block Storage requires a Solaris-based operating sys‐
tem and we assume that your experience is primarily with Linux-based systems.

• Sheepdog. A recent project that aims to provide block storage for KVM-based
instances, with support for replication across hosts. We don’t recommend Sheep‐
dog for a production cloud, because its authors at NTT Labs consider Sheepdog
as an experimental technology.

52 | Chapter 5: Storage Decisions

Notes on OpenStack Object Storage
OpenStack Object Storage provides a highly scalable, highly available storage solution
by relaxing some of the constraints of traditional file systems. In designing and pro‐
curing for such a cluster, it is important to understand some key concepts about its
operation. Essentially, this type of storage is built on the idea that all storage hardware
fails, at every level, at some point. Infrequently encountered failures that would ham‐
string other storage systems, such as issues taking down RAID cards, or entire servers
are handled gracefully with OpenStack Object Storage.

A good document describing the Object Storage architecture is found within the de‐
veloper documentation (http://docs.openstack.org/developer/swift/overview_archi‐
tecture.html) - read this first. Once you have understood the architecture, you should
know what a proxy server does and how zones work. However, some there important
points that are often missed at first glance.

When designing your cluster, you must consider durability and availability. Under‐
stand that the predominant source of these is the spread and placement of your data,
rather than the reliability of the hardware. Consider the default value of the number
of replicas, which is 3. This means that when before an object is marked as having
being written at least two copies exists - in case a single server fails to write, the third
copy may or may not yet exist when the write operation initially returns. Altering this
number increases the robustness of your data, but reduces the amount of storage you
have available. Next look at the placement of your servers. Consider spreading them
widely throughout your data centre’s network and power failure zones. Is a zone a
rack, a server or a disk?

Object Storage’s network patterns might seem unfamiliar at first. Consider these main
traffic flows:

• Among object, container, and account servers
• Between those servers and the proxies
• Between the proxies and your users

Object Storage is very ‘chatty’ among servers hosting data - even a small cluster does
megabytes/second of traffic, which is predominantly “Do you have the object?"/"Yes I
have the object!.” Of course, if the answer to the aforementioned question is negative
or times out, replication of the object begins.

Consider the scenario where an entire server fails, and 24 TB of data needs to be
transferred “immediately” to remain at three copies - this can put significant load on
the network.

Another oft forgotten fact is that when a new file is being uploaded, the proxy server
must write out as many streams as there are replicas - giving a multiple of network

Notes on OpenStack Object Storage | 53

http://docs.openstack.org/developer/swift/overview_architecture.html
http://docs.openstack.org/developer/swift/overview_architecture.html

traffic. For a 3-replica cluster, 10Gbps in means 30Gbps out. Combining this with the
previous high bandwidth demands of replication is what results in the recommenda‐
tion that your private network is of significantly higher bandwidth than your public
need be. Oh, and OpenStack Object Storage communicates internally with unencryp‐
ted, unauthenticated rsync for performance - you do want the private network to be
private.

The remaining point on bandwidth is the public facing portion. swift-proxy is state‐
less, which means that you can easily add more and use http load-balancing methods
to share bandwidth and availability between them.

More proxies means more bandwidth, if your storage can keep up.

54 | Chapter 5: Storage Decisions

CHAPTER 6

Network Design

OpenStack provides a rich networking environment, and this chapter details the re‐
quirements and options to deliberate when designing your cloud.

If this is the first time you are deploying a cloud infrastructure in your organisation,
after reading this section, your first conversations should be with your networking
team. Network usage in a running cloud is vastly different from traditional network
deployments, and has the potential to be disruptive at both a connectivity and a poli‐
cy level.

For example, you must plan the number of IP addresses that you need for both your
guest instances as well as management infrastructure. Additionally, you must re‐
search and discuss cloud network connectivity through proxy servers and firewalls.

Management Network
A management network, typically consisting of a separate switch and separate NICs,
is a recommended option. This segregation prevents system administration and mon‐
itoring system access from being disrupted by traffic generated by the guests them‐
selves.

Consider creating other private networks for communication between internal com‐
ponents of OpenStack, such as the Message Queue and OpenStack Compute. VLANs
are great for these scenarios.

Public Addressing Options
There are two main types of IP addresses for guest virtual machines: Fixed IPs and
Floating IPs. Fixed IPs are assigned to instances on boot, whereas Floating IP address‐

55

es can change their association between instances by action of the user. Both types of
IP addresses can either be public or private, depending on your use case.

Fixed IP addresses are required, whereas it is possible to run OpenStack without
Floating IPs. One of the most common use cases for Floating IPs is to provide public
IP addresses to a private cloud, where there are a limited number of IP addresses
available. Another is for a public cloud user to have a “static” IP address that can be
reassigned when an instance is upgraded or moved.

Fixed IP addresses can be private for private clouds, or public for public clouds.
When an instance terminates, its Fixed IP is lost. It is worth noting that newer users
of cloud computing may find their ephemeral nature frustrating.

IP Address Planning
An OpenStack installation can potentially have many subnets, and different types of
services in each. An IP address plan can assist with a shared understanding of net‐
work partition purposes and scalability. Control services can have public and private
IP addresses, and as noted above there are a couple of options for instance’s public
addresses.

An IP address plan might be broken down into the following sections:

subnet router Packets leaving the subnet go via this address, which could be a dedicated
router or a nova-network service.

control services public
interfaces

Public access to swift-proxy, nova-api, glance-api and horizon come to
these addresses, which could be on one side of a load balancer, or pointing at
individual machines.

Object Storage cluster
internal communications

Traffic amongst object/account/container servers and between these and the
proxy server’s internal interface uses this private network.

compute and storage
communications

If ephemeral or block storage is external to the compute node, this network is
used.

out-of-band remote
management

If a dedicated remote access controller chip is included in servers, often these
are on a separate network.

in-band remote
management

Often, an extra (such as, 1 GB) interface on compute or storage nodes is used
for system administrators or monitoring tools to access the host instead of
going through the public interface.

56 | Chapter 6: Network Design

spare space for future
growth

Adding more public-facing control services, or guest instance IPs should always
be part of your plan.

For example, take a deployment which has both OpenStack Compute and Object
Storage, with private ranges 172.22.42.0/24 and 172.22.87.0/26 available. One way to
segregate the space might be:

172.22.42.0/24
172.22.42.1 - 172.22.42.3 - subnet routers
172.22.42.4 - 172.22.42.20 - spare for networks
172.22.42.21 - 172.22.42.104 - Compute node remote access controllers (inc
spare)
172.22.42.105 - 172.22.42.188 - Compute node management interfaces (inc spare)
172.22.42.189 - 172.22.42.208 - Swift proxy remote access controllers (inc
spare)
172.22.42.209 - 172.22.42.228 - Swift proxy management interfaces (inc spare)
172.22.42.229 - 172.22.42.252 - Swift storage servers remote access controllers
(inc spare)
172.22.42.253 - 172.22.42.254 - spare
172.22.87.0/26:
172.22.87.1 - 172.22.87.3 - subnet routers
172.22.87.4 - 172.22.87.24 - Swift proxy server internal interfaces (inc
spare)
172.22.87.25 - 172.22.87.63 - Swift object server internal interfaces (inc
spare)

A similar approach can be taken with public IP addresses, taking note that large, flat
ranges are preferred for use with guest instance IPs. Take into account that for some
OpenStack networking options, a public IP address in the range of a guest instance
public IP address is assigned to the nova-compute host.

Network Topology
OpenStack Compute provides several network managers, each with their own
strengths and weaknesses. The selection of a network manager changes your network
topology, so the choice should be made carefully.

Network Topology | 57

Type Strengths Weaknesses

Flat Extremely simple.

No DHCP broadcasts.

Requires file injection into the instance.

Limited to certain distributions of Linux.

Difficult to configure and is not recommended.

FlatDHCP Relatively simple to setup.

Standard networking.

Works with all operating systems.

Requires its own DHCP broadcast domain.

VlanManager Each tenant is isolated to their own
VLANs.

More complex to set up.

Requires its own DHCP broadcast domain.

Requires many VLANs to be trunked onto a single
port.

Standard VLAN number limitation.

Switches must support 802.1q VLAN tagging.

FlatDHCP Multi-
host HA

Networking failure is isolated to
the VMs running on the hypervisor
affected.

DHCP traffic can be isolated within
an individual host.

Network traffic is distributed to the
compute nodes.

More complex to set up.

By default, compute nodes need public IP
addresses.

Options must be carefully configured for live
migration to work with networking.

VLANs
VLAN configuration can be as simple or as complicated as desired. The use of
VLANs has the benefit of allowing each project its own subnet and broadcast segre‐
gation from other projects. To allow OpenStack to efficiently use VLANs, you must
allocate a VLAN range (one for each project) and turn each compute node switch
port into a trunk port.

For example, if you estimate that your cloud must support a max of 100 projects, pick
a free VLAN range that your network infrastructure is currently not using (such as,
VLAN 200 - 299). You must configure OpenStack with this range as well as configure
your switch ports to allow VLAN traffic from that range.

58 | Chapter 6: Network Design

Multi-NIC
OpenStack Compute has the ability to assign multiple NICs to instances on a per-
project basis. This is generally an advanced feature and not an everyday request. This
can easily be done on a per-request basis, though. However, be aware that a second
NIC uses up an entire subnet or VLAN. This decrements your total number of sup‐
ported projects by one.

Multi-host and Single-host Networking
The nova-network service has the ability to operate in a multi-host or single-host
mode. Multi-host is when each compute node runs a copy of nova-network and the
instances on that compute node use the compute node as a gateway to the Internet.
The compute nodes also host the Floating IPs and Security Groups for instances on
that node. Single-host is when a central server, for example, the cloud controller, runs
the nova-network service. All compute nodes forward traffic from the instances to
the cloud controller. The cloud controller then forwards traffic to the Internet. The
cloud controller hosts the Floating IPs and Security Groups for all instances on all
compute nodes in the cloud.

There are benefits to both modes. Single-node has the downside of a single point of
failure. If the cloud controller is not available, instances cannot communicate on the
network. This is not true with multi-host, but multi-host requires that each compute
node has a public IP address to communicate on the Internet. If you are not able to
obtain a significant block of public IP addresses, multi-host might not be an option.

Services for Networking
OpenStack, like any network application, has a number of the standard considera‐
tions to apply, such as DNS and NTP.

NTP
Time synchronisation is a critical element to ensure continued operation of Open‐
Stack components. Correct time is necessary to avoid errors in instance scheduling,
replication of objects in the object store, and even matching log timestamps for de‐
bugging.

All servers running OpenStack components should be able to access an appropriate
NTP server. You may decide to set one up locally, or use the public pools available
from http://www.pool.ntp.org/

Services for Networking | 59

DNS
OpenStack does not currently provide DNS services, aside from the dnsmasq daemon
which resides on nova-network hosts. You could consider providing a dynamic DNS
service to allow instances to update a DNS entry with new IP addresses. You can also
consider making a generic forward and reverse DNS mapping for instance’s IP ad‐
dresses, such as vm-203-0-113-123.example.com.

60 | Chapter 6: Network Design

CHAPTER 7

Example Architecture

Because OpenStack is highly configurable, with many different back-ends and net‐
work configuration options, it is difficult to write documentation that covers all pos‐
sible OpenStack deployments. Therefore, this guide defines an example architecture to
simplify the task of documenting, as well as to scope this guide so that it is focused on
a configuration where the authors have direct deployment experience.

Overview

OpenStack release Folsom

Host operating system Ubuntu 12.04 LTS

OpenStack package repository Ubuntu Cloud Archive (https://wiki.ubuntu.com/ServerTeam/
CloudArchive) *

Hypervisor KVM

Database MySQL*

Message queue RabbitMQ

Networking service nova-network

Network manager FlatDHCP

Single nova-network or multi-host? multi-host*

61

https://wiki.ubuntu.com/ServerTeam/CloudArchive

Image Service (glance) back-end file

Identity Service (keystone) driver SQL

Block Storage Service (cinder) back-end LVM/iSCSI

Live Migration back-end shared storage using NFS *

Object storage OpenStack Object Storage (swift)

An asterisk (*) indicates when the example architecture deviates from the settings of a
default installation.

The following features of OpenStack are supported by the example
architecture documented in this guide, but are optional:

• dashboard
• block storage
• floating IP addresses
• live migration
• object storage

Rationale
This example architecture has been selected based on the current default feature set of
OpenStack Folsom, with an emphasis on stability. In particular, if none of the guide
authors had experience deploying the Folsom release of OpenStack with a specific
back-end or configuration, we did not consider it for the example architecture. We
believe that many clouds that currently run OpenStack in production have made sim‐
ilar choices.

You must first choose the operating system that runs on all of the physical nodes.
While OpenStack is supported on several distributions of Linux, we used Ubuntu
12.04 LTS (Long Term Support), which is used by the majority of the development
community, has feature completeness compared with other distributions, and has
clear future support plans.

We recommend that you do not use the default Ubuntu OpenStack install packages
and instead use the Ubuntu Cloud Archive (https://wiki.ubuntu.com/ServerTeam/
CloudArchive). The Cloud Archive is a package repository supported by Canonical

62 | Chapter 7: Example Architecture

https://wiki.ubuntu.com/ServerTeam/CloudArchive

that allows you to upgrade to future OpenStack releases while remaining on Ubuntu
12.04.

KVM as a hypervisor complements the choice of Ubuntu - being a matched pair in
terms of support, and also because of the significant degree of attention it garners
from the OpenStack development community (including the authors, who mostly use
KVM). It is also feature complete, free from licensing charges and restrictions.

MySQL follows a similar trend. Despite its recent change of ownership, this database
is the most tested for use with OpenStack and is heavily documented for running on
Ubuntu. We deviate from the default database, SQLite, because SQLite is not an ap‐
propriate database for production usage.

The choice of RabbitMQ over other AMQP compatible options that are gaining sup‐
port in OpenStack, such as ZeroMQ and Qpid is due to its ease of use with Ubuntu
and significant testing in production. It also is the only option which supports fea‐
tures such as Compute Cells. We recommend clustering with RabbitMQ, as it is an
integral component of the system, and fairly simple to implement due to its inbuilt
nature.

As discussed in previous chapters, there are several options for networking in Open‐
Stack Compute. We recommend FlatDHCP and to use Multi-Host networking mode
for high availability, running one nova-network daemon per OpenStack Compute
host. This provides a robust mechanism for ensuring network interruptions are iso‐
lated to individual compute hosts, and allows for the direct use of hardware network
gateways.

Live Migration is supported by way of shared storage, with NFS as the distributed
file system.

Acknowledging that many small-scale deployments see running an Object Storage
service just for the storage of virtual machine images as too costly, we opted for the
file back-end in the OpenStack Image Catalog and Delivery Service (Glance). If the
cloud you are designing also intends to run Object Storage, it is trivial to enable this
as the back-end instead, and a recommended approach.

We chose the SQL back-end for Identity Service (keystone) over others, such as
LDAP. This back-end is simple to install and is robust. The authors acknowledge that
many installations want to bind with existing directory services, and caution careful
understanding of the array of options available (http://docs.openstack.org/trunk/
config-reference/content/ch_configuring-openstack-identity.html#configuring-
keystone-for-ldap-backend)

The Block Storage service (cinder) is installed natively on external storage nodes and
uses the LVM/iSCSI plugin. Most Block Storage Service plugins are tied to particular

Rationale | 63

http://docs.openstack.org/trunk/config-reference/content/ch_configuring-openstack-identity.html#configuring-keystone-for-ldap-backend

vendor products and implementations limiting their use to consumers of those hard‐
ware platforms, but LVM/iSCSI is robust and stable on commodity hardware.

While the cloud can be run without the OpenStack Dashboard, we consider it to be
indispensable, not just for user interaction with the cloud, but also as a tool for opera‐
tors. Additionally, the dashboard’s use of Django makes it a flexible framework for ex‐
tension.

Why Not Use the OpenStack Network Service (quantum)?
We do not discuss the OpenStack Network Service (quantum) in this guide, because
the authors of this guide only have production deployment experience using nova-
network. Additionally, it does not yet support multi-host networking.

Why Use Multi-host Networking?
In a default OpenStack deployment, there is a single nova-network service that runs
within the cloud (usually on the cloud controller) that provides services such as net‐
work address translation (NAT), DHCP, and DNS to the guest instances. If the single
node that runs the nova-network service goes down, you cannot access your instan‐
ces and the instances cannot access the Internet. The single node that runs the nova-
network service can become a bottleneck if excessive network traffic comes in and
goes out of the cloud.

Multi-host (http://docs.openstack.org/folsom/openstack-compute/admin/content/
existing-ha-networking-options.html#d6e8906) is a high-availability option for the
network configuration where the nova-network service is run on every compute node
instead of running on only a single node.

Detailed Description
The reference architecture consists of multiple compute nodes, a cloud controller, an
external NFS storage server for instance storage and an OpenStack Block Storage
server for volume storage. A network time service (Network Time Protocol, NTP)
synchronizes time for all the nodes. FlatDHCPManager in multi-host mode is used
for the networking.

64 | Chapter 7: Example Architecture

http://docs.openstack.org/folsom/openstack-compute/admin/content/existing-ha-networking-options.html#d6e8906

The cloud controller runs: the dashboard, the API services, the database (MySQL), a
message queue server (RabbitMQ), the scheduler for choosing compute resources
(nova-scheduler), Identity services (keystone, nova-consoleauth), Image services
(glance-api, glance-registry), services for console access of guests, and block stor‐
age services including the scheduler for storage resources (cinder-api and cinder-
scheduler).

Compute nodes are where the computing resources are held, and in our example ar‐
chitecture they run the hypervisor (KVM), libvirt (the driver for the hypervisor,
which enables live migration node to node), nova-compute, nova-api-metadata
(generally only used when running in multi-host mode, it retrieves instance-specific
metadata), nova-vncproxy, and nova-network.

Detailed Description | 65

The network consists of two switches, one for the management or private traffic, and
one which covers public access including Floating IPs. To support this, the cloud con‐
troller and the compute nodes have two network cards. The OpenStack Block Storage
and NFS storage servers only need to access the private network and therefore only
need one network card, but multiple cards run in a bonded configuration are recom‐
mended if possible. Floating IP access is direct to the internet, whereas Flat IP access
goes through a NAT.

Optional Extensions
You can extend this reference architecture as follows:

• Add additional cloud controllers (see Chapter 11).
• Add an OpenStack Storage service (http://docs.openstack.org/havana/install-

guide/install/apt/content/ch_swift.html)
• Add additional OpenStack Block Storage hosts (see Chapter 11).

66 | Chapter 7: Example Architecture

What’s Next?
Congratulations! By now, you should have a solid design for your
cloud. We now recommend that you turn to the OpenStack Install
and Deploy Manual - Ubuntu (http://docs.openstack.org/havana/
install-guide/install/apt/), which contains a step-by-step guide on
how to manually install the OpenStack packages and dependencies
on your cloud.
While it is important for an operator to be familiar with the steps in‐
volved in deploying OpenStack, we also strongly encourage you to
evaluate configuration management tools such as Puppet or Chef
that can help automate this deployment process.
In the remainder of the guide, we assume that you have successfully
deployed an OpenStack cloud and are able to perform basic opera‐
tions such as adding images, booting instances, and attaching vol‐
umes.
As your focus turns to stable operations, we recommend you do an
initial skim of the remainder of the book to get a sense of the con‐
tent. Some of this content is useful to read in advance, so that you
can put best practices into effect to simplify your life in the long run.
Other content is more useful as a reference that you might refer
when an unexpected event occurs, such a power failure or trouble‐
shooting a particular problem.

Optional Extensions | 67

http://docs.openstack.org/havana/install-guide/install/apt/
http://docs.openstack.org/havana/install-guide/install/apt/

CHAPTER 8

Lay of the Land

From this point forward in the guide, we assume that you have an OpenStack cloud
up and running. This section helps you set up your working environment and use it
to take a look around your cloud.

Client Command Line Tools
We recommend using a combination of the OpenStack command line interface (CLI)
client tools and the OpenStack Dashboard. Some users with a background in other
cloud technologies may be using the EC2 Compatibility API, which uses somewhat
different naming conventions from the native API. We highlight those differences.

We strongly suggest that you install the command-line clients from the Python Pack‐
age Index(PyPI) (https://pypi.python.org/) instead of from the Ubuntu or Fedora
packages. The clients are under heavy development and it is very likely at any given
time the version of the packages distributed by your operating system vendor are out
of date.

The “pip” utility is used to manage package installation from the PyPI archive and is
available in the “python-pip” package in most Linux distributions. Each OpenStack
project has its own client, so depending on which services your site runs, install some
or all of the following packages:

• python-novaclient (nova CLI)
• python-glanceclient (glance CLI)
• python-keystoneclient (keystone CLI)
• python-cinderclient (cinder CLI)
• python-swiftclient (swift CLI)

69

https://pypi.python.org/
https://pypi.python.org/

• python-quantumclient (quantum CLI)

Installing the Tools
To install (or upgrade) a package from the PyPI archive with pip, as root:

pip install [--upgrade] <package-name>

To remove the package:

pip uninstall <package-name>

If you need even newer versions of the clients, pip can install directly from the up‐
stream git repository using the -e flag. You must specify a name for the Python egg
that is installed. For example:

pip install -e git+https://github.com/openstack/python-
novaclient.git#egg=python-novaclient

If you support the EC2 API on your cloud you should also install the “euca2ools”
package or some other EC2 API tool so you can get the same view your users have.
Using EC2 API based tools is mostly out of the scope of this guide, though we discuss
getting credentials for use with it.

Administrative Command Line Tools
There are also several *-manage command line tools:

• nova-manage
• glance-manage
• keystone-manage
• cinder-manage

Unlike the tools mentioned above, the *-manage tools must be run from the cloud
controller, as root, because they need read access to the config files such as /etc/
nova/nova.conf and make queries directly against the database rather than against
the OpenStack API endpoints.

The existence of the *-manage tools is a legacy issue. It is a goal of the OpenStack
project to eventually migrate all of the remaining functionality in the *-manage tools
into the regular client tools. Until that day, you need to SSH into the cloud controller
node to perform some maintenance operations that require one of the *-manage
tools.

70 | Chapter 8: Lay of the Land

Getting Credentials
You must have the appropriate credentials if you wish to use the command line tools
to make queries against your OpenStack cloud. By far the easiest way to obtain au‐
thentication credentials to use with command line clients is to use the horizon dash‐
board. From the top right navigation row, select the Settings link to access the user
settings page where you can set your language and timezone preferences for the dash‐
board view. More importantly, this action changes the left hand navigation column to
include OpenStack API and EC2 Credentials links, which let you to generate files you
can source in your shell to populate the environment variables the command line
tools need to know where your service endpoints are as well as your authentication
information.

For using the OpenStack native tools follow the OpenStack API link. The top section
lists the URLs of your service endpoints and below that is a section titled Download
OpenStack RC File. For looking at the cloud as an administrator, you can choose ad‐
min from the drop-down menu. In this section select the project you wish to get cre‐
dentials for and click Download RC. This generates a file called openrc.sh, which
looks something like this:

#!/bin/bash

With the addition of Keystone, to use an openstack cloud you should
authenticate against keystone, which returns a **Token** and **Service
Catalog**. The catalog contains the endpoint for all services the
user/tenant has access to - including nova, glance, keystone, swift.
#
NOTE: Using the 2.0 *auth api* does not mean that compute api is 2.0.
We use the 1.1 *compute api*
export OS_AUTH_URL=http://203.0.113.10:5000/v2.0

With the addition of Keystone we have standardized on the term **tenant**
as the entity that owns the resources.
export OS_TENANT_ID=98333aba48e756fa8f629c83a818ad57
export OS_TENANT_NAME="test-project"

In addition to the owning entity (tenant), openstack stores the entity
performing the action as the **user**.
export OS_USERNAME=test-user

With Keystone you pass the keystone password.
echo "Please enter your OpenStack Password: "
read -s OS_PASSWORD_INPUT
export OS_PASSWORD=$OS_PASSWORD_INPUT

Client Command Line Tools | 71

This does not save your password in plain text, which is a good
thing. But when you source or run the script, it prompts for your
password and then stores your response in the environment variable
OS_PASSWORD. It is important to note that this does require interactiv‐
ity. It is possible to store a value directly in the script if you require a
non interactive operation, but you then need to be extremely cau‐
tious with the security and permissions of this file.

EC2 compatibility credentials can be downloaded from the “EC2 Credentials” link in
the left hand navigation bar, then selecting the project you want credentials for and
clicking “Download EC2 Credentials”. This generates a zip file with server x509 certif‐
icates and a shell script fragment. Create a new directory in a secure location as, un‐
like the default openrc, these are live credentials containing all the authentication in‐
formation required to access your cloud identity. Extract the zip file here. You should
have cacert.pem, cert.pem, ec2rc.sh and pk.pem. The ec2rc.sh is similar to this:

#!/bin/bash

NOVARC=$(readlink -f "${BASH_SOURCE:-${0}}" 2>/dev/null) ||\
NOVARC=$(python -c 'import os,sys; \
print os.path.abspath(os.path.realpath(sys.argv[1]))' "${BASH_SOURCE:-${0}}")
NOVA_KEY_DIR=${NOVARC%/*}
export EC2_ACCESS_KEY=df7f93ec47e84ef8a347bbb3d598449a
export EC2_SECRET_KEY=ead2fff9f8a344e489956deacd47e818
export EC2_URL=http://203.0.113.10:8773/services/Cloud
export EC2_USER_ID=42 # nova does not use user id, but bundling requires it
export EC2_PRIVATE_KEY=${NOVA_KEY_DIR}/pk.pem
export EC2_CERT=${NOVA_KEY_DIR}/cert.pem
export NOVA_CERT=${NOVA_KEY_DIR}/cacert.pem
export EUCALYPTUS_CERT=${NOVA_CERT} # euca-bundle-image seems to require this

alias ec2-bundle-image="ec2-bundle-image --cert $EC2_CERT --privatekey \
$EC2_PRIVATE_KEY --user 42 --ec2cert $NOVA_CERT"
alias ec2-upload-bundle="ec2-upload-bundle -a $EC2_ACCESS_KEY -s \
$EC2_SECRET_KEY --url $S3_URL --ec2cert $NOVA_CERT"

To put the EC2 credentials into your environment source the ec2rc.sh file.

Command Line Tricks and Traps
The command line tools can be made to show the OpenStack API calls it’s making by
passing it the --debug flag for example:

nova --debug list

This example shows the HTTP requests from the client and the responses from the
endpoints, which can be helpful in creating custom tools written to the OpenStack
API.

72 | Chapter 8: Lay of the Land

Keyring Support (https://wiki.openstack.org/wiki/KeyringSupport) can be a source of
confusion to the point that, as of the time of this writing, there is a bug report
(https://bugs.launchpad.net/python-novaclient/+bug/1020238) which has been open,
closed as invalid, and reopened through a few cycles.

The issue is that under some conditions the command line tools try to use a Python
keyring as a credential cache and, under a subset of those conditions, another condi‐
tion can arise where the tools prompt for a keyring password on each use. If you find
yourself in this unfortunate subset, adding the --no-cache flag or setting the envi‐
ronment variable OS_NO_CACHE=1 avoids the credentials cache.

This causes the command line tool to authenticate on each and every
interaction with the cloud.

cURL
Underlying the use of the command line tools is the OpenStack API, which is a
RESTful API that runs over HTTP. There may be cases where you want to interact
with the API directly or need to use it because of a suspected bug in one of the CLI
tools. The best way to do this is use a combination of cURL (http://curl.haxx.se/) and
another tool to parse the JSON, such as jq (http://stedolan.github.com/jq/), from the
responses.

The first thing you must do is authenticate with the cloud using your credentials to
get an authentication token.

Your credentials are a combination of username, password, and tenant (project). You
can extract these values from the openrc.sh discussed above. The token allows you to
interact with your other service endpoints without needing to re-authenticate for
every request. Tokens are typically good for 24 hours, and when the token expires,
you are alerted with a 401 (Unauthorized) response and you can request another to‐
ken.

1. Look at your OpenStack service catalog:
$ curl -s -X POST http://203.0.113.10:35357/v2.0/tokens \
-d '{"auth": {"passwordCredentials": {"username":"test-user",
"password":"test-password"}, "tenantName":"test-project"}}' \
-H "Content-type: application/json" | jq .

2. Read through the JSON response to get a feel for how the catalog is laid out.
To make working with subsequent requests easier, store the token in an environ‐
ment variable.

$ TOKEN=`curl -s -X POST http://203.0.113.10:35357/v2.0/tokens \
-d '{"auth": {"passwordCredentials": {"username":"test-user",

Client Command Line Tools | 73

https://wiki.openstack.org/wiki/KeyringSupport
https://bugs.launchpad.net/python-novaclient/+bug/1020238
http://curl.haxx.se/
http://stedolan.github.com/jq/

"password":"test-password"}, "tenantName":"test-project"}}' \
-H "Content-type: application/json" | jq -r .access.token.id`

Now you can refer to your token on the command line as $TOKEN.
3. Pick a service endpoint from your service catalog, such as compute, and try out a

request like listing instances (servers).
$ curl -s \
-H "X-Auth-Token: $TOKEN" \
http://203.0.113.10:8774/v2/98333aba48e756fa8f629c83a818ad57/servers | jq .

To discover how API requests should be structured, read the OpenStack API Refer‐
ence (http://api.openstack.org/api-ref.html). To chew through the responses using jq,
see the jq Manual (http://stedolan.github.com/jq/manual/).

The -s flag used in the cURL commands above are used to prevent the progress
meter from being shown. If you are having trouble running cURL commands, you’ll
want to remove it. Likewise, to help you troubleshoot cURL commands you can in‐
clude the -v flag to show you the verbose output. There are many more extremely
useful features in cURL, refer to the man page for all of the options.

Servers and Services
As an administrator, there are a few ways to discover what your OpenStack cloud
looks like simply by using the OpenStack tools available. This section gives you an
idea of how to get an overview of your cloud, its shape, size, and current state.

First, you can discover what servers belong to your OpenStack cloud by running:

$ nova-manage service list | sort

The output looks like the following:

Binary Host Zone Status State Updated_At
nova-cert cloud.example.com nova enabled :-) 2013-02-25 19:32:38
nova-compute c01.example.com nova enabled :-) 2013-02-25 19:32:35
nova-compute c02.example.com nova enabled :-) 2013-02-25 19:32:32
nova-compute c03.example.com nova enabled :-) 2013-02-25 19:32:36
nova-compute c04.example.com nova enabled :-) 2013-02-25 19:32:32
nova-compute c05.example.com nova enabled :-) 2013-02-25 19:32:41
nova-consoleauth cloud.example.com nova enabled :-) 2013-02-25 19:32:36
nova-network cloud.example.com nova enabled :-) 2013-02-25 19:32:32
nova-scheduler cloud.example.com nova enabled :-) 2013-02-25 19:32:33

The output shows that there are five compute nodes and one cloud controller. You see
a smiley face like :-) which indicates that the services are up and running and func‐
tional. If a service is no longer available, the :-) changes to an XXX. This is an indica‐
tion that you should troubleshoot why the service is down.

If you are using Cinder, run the following command to see a similar listing:

74 | Chapter 8: Lay of the Land

http://api.openstack.org/api-ref.html
http://api.openstack.org/api-ref.html
http://stedolan.github.com/jq/manual/

$ cinder-manage host list | sort

host zone
c01.example.com nova
c02.example.com nova
c03.example.com nova
c04.example.com nova
c05.example.com nova
cloud.example.com nova

With these two tables, you now have a good overview of what servers and services
make up your cloud.

You can also use the Identity Service (Keystone), to see what services are available in
your cloud as well as what endpoints have been configured for the services.

The following commands require you to have your shell environment configured
with the proper administrative variables.

$ keystone service-list

+-----+----------+----------+----------------------------+
| id | name | type | description |
+-----+----------+----------+----------------------------+
...	cinder	volume	Cinder Service
...	glance	image	OpenStack Image Service
...	nova_ec2	ec2	EC2 Service
...	keystone	identity	OpenStack Identity Service
...	nova	compute	OpenStack Compute Service
+-----+----------+----------+----------------------------+

The output above shows that there are five services configured.

To see the endpoint of each service, run:

$ keystone endpoint-list

---+--+--
 | publicurl |
---+--+--
 | http://example.com:8774/v2/%(tenant_id)s |
 | http://example.com:9292 |
 | http://example.com:8000/v1 |
 | http://example.com:5000/v2.0 |
---+--+--

---+--+--
 | adminurl |
---+--+--
 | http://example.com:8774/v2/%(tenant_id)s |
 | http://example.com:9292 |
 | http://example.com:8000/v1 |
 | http://example.com:5000/v2.0 |
---+--+--

Client Command Line Tools | 75

This example shows two columns pulled from the larger listing. There should be a
one-to-one mapping between a service and endpoint. Note the different URLs and
ports between the public URL and the admin URL for some services.

You can find the version of the Compute installation by using the nova-manage com‐
mand:

$ nova-manage version list

Diagnose your compute nodes
You can obtain extra information about the running virtual machines: their CPU us‐
age, the memory, the disk I/O or network I/O, per instance, by running the nova diag‐
nostics command with a server ID:

$ nova diagnostics <serverID>

The output of this command will vary depending on the hypervisor. Example output
when the hypervisor is Xen:

+----------------+-----------------+
| Property | Value |
+----------------+-----------------+
cpu0	4.3627
memory	1171088064.0000
memory_target	1171088064.0000
vbd_xvda_read	0.0
vbd_xvda_write	0.0
vif_0_rx	3223.6870
vif_0_tx	0.0
vif_1_rx	104.4955
vif_1_tx	0.0
+----------------+-----------------+

While the command should work with any hypervisor that is controlled through lib‐
virt (e.g., KVM, QEMU, LXC), it has only been tested with KVM. Example output
when the hypervisor is KVM:

+------------------+------------+
| Property | Value |
+------------------+------------+
cpu0_time	2870000000
memory	524288
vda_errors	-1
vda_read	262144
vda_read_req	112
vda_write	5606400
vda_write_req	376
vnet0_rx	63343

76 | Chapter 8: Lay of the Land

vnet0_rx_drop	0
vnet0_rx_errors	0
vnet0_rx_packets	431
vnet0_tx	4905
vnet0_tx_drop	0
vnet0_tx_errors	0
vnet0_tx_packets	45
+------------------+------------+

Network
Next, take a look at what Fixed IP networks are configured in your cloud. You can use
the nova command-line client to get the IP ranges.

$ nova network-list
+--------------------------------------+--------+--------------+
| ID | Label | Cidr |
+--------------------------------------+--------+--------------+
| 3df67919-9600-4ea8-952e-2a7be6f70774 | test01 | 10.1.0.0/24 |
| 8283efb2-e53d-46e1-a6bd-bb2bdef9cb9a | test02 | 10.1.1.0/24 |
+--------------------------------------+--------+--------------+

The nova-manage tool can provide some additional details.

$ nova-manage network list
id IPv4 IPv6 start address DNS1 DNS2 VlanID project uuid
1 10.1.0.0/24 None 10.1.0.3 None None 300 2725bbd beacb3f2
2 10.1.1.0/24 None 10.1.1.3 None None 301 none d0b1a796

This output shows that two networks are configured, each network containing 255
IPs (a /24 subnet). The first network has been assigned to a certain project while the
second network is still open for assignment. You can assign this network manually or
it is automatically assigned when a project launches their first instance.

To find out if any floating IPs are available in your cloud, run:

$ nova-manage floating list

2725bbd458e2459a8c1bd36be859f43f 1.2.3.4 None
nova vlan20
None 1.2.3.5 48a415e7-6f07-4d33-ad00-814e60b010ff
nova vlan20

Here, two floating IPs are available. The first has been allocated to a project while the
other is unallocated.

Users and Projects
To see a list of projects that have been added to the cloud, run:

$ keystone tenant-list

Network | 77

+-----+----------+---------+
| id | name | enabled |
+-----+----------+---------+
...	jtopjian	True
...	alvaro	True
...	everett	True
...	admin	True
...	services	True
...	jonathan	True
...	lorin	True
...	anne	True
...	rhulsker	True
...	tom	True
...	adam	True
+-----+----------+---------+

To see a list of users, run:

$ keystone user-list

+-----+----------+---------+------------------------------+
| id | name | enabled | email |
+-----+----------+---------+------------------------------+
...	everett	True	everett.towne@backspace.com
...	jonathan	True	jon@sfcu.edu
...	nova	True	nova@localhost
...	rhulsker	True	ryan.hulkster@cyberalbert.ca
...	lorin	True	lorinhoch@nsservices.com
...	alvaro	True	Alvaro.Perry@cyberalbert.ca
...	anne	True	anne.green@backspace.com
...	admin	True	root@localhost
...	cinder	True	cinder@localhost
...	glance	True	glance@localhost
...	jtopjian	True	joe.topjian@cyberalbert.com
...	adam	True	adam@ossmanuals.net
...	tom	True	fafield@univm.edu.au
+-----+----------+---------+------------------------------+

Sometimes a user and a group have a one-to-one mapping. This
happens for standard system accounts, such as cinder, glance, nova,
and swift, or when only one user is ever part of a group.

Running Instances
To see a list of running instances, run:

$ nova list --all-tenants

78 | Chapter 8: Lay of the Land

+-----+------------------+--------+---+
| ID | Name | Status | Networks |
+-----+------------------+--------+---+
...	Windows	ACTIVE	novanetwork_1=10.1.1.3, 199.116.232.39
...	cloud controller	ACTIVE	novanetwork_0=10.1.0.6; jtopjian=10.1.2.3
...	compute node 1	ACTIVE	novanetwork_0=10.1.0.4; jtopjian=10.1.2.4
...	devbox	ACTIVE	novanetwork_0=10.1.0.3
...	devstack	ACTIVE	novanetwork_0=10.1.0.5
...	initial	ACTIVE	nova_network=10.1.7.4, 10.1.8.4
...	lorin-head	ACTIVE	nova_network=10.1.7.3, 10.1.8.3
+-----+------------------+--------+---+

Unfortunately this command does not tell you various details about the running in‐
stances, such as what compute node the instance is running on, what flavor the in‐
stance is, and so on. You can use the following command to view details about indi‐
vidual instances:

$ nova show <uuid>

For example:

nova show 81db556b-8aa5-427d-a95c-2a9a6972f630

+-------------------------------------+-----------------------------------+
| Property | Value |
+-------------------------------------+-----------------------------------+
OS-DCF:diskConfig	MANUAL
OS-EXT-SRV-ATTR:host	c02.example.com
OS-EXT-SRV-ATTR:hypervisor_hostname	c02.example.com
OS-EXT-SRV-ATTR:instance_name	instance-00000029
OS-EXT-STS:power_state	1
OS-EXT-STS:task_state	None
OS-EXT-STS:vm_state	active
accessIPv4	
accessIPv6	
config_drive	
created	2013-02-13T20:08:36Z
flavor	m1.small (6)
hostId	...
id	...
image	Ubuntu 12.04 cloudimg amd64 (...)
key_name	jtopjian-sandbox
metadata	{}
name	devstack
novanetwork_0 network	10.1.0.5
progress	0
security_groups	[{u'name': u'default'}]
status	ACTIVE
tenant_id	...
updated	2013-02-13T20:08:59Z
user_id	...
+-------------------------------------+-----------------------------------+

Running Instances | 79

CHAPTER 9

Managing Projects and Users

An OpenStack cloud does not have much value without users. This chapter covers
topics that relate to managing users, projects, and quotas.

Projects or Tenants?
In OpenStack user interfaces and documentation, a group of users is referred to as a
project or tenant. These terms are interchangeable.

The initial implementation of the OpenStack Compute Service (nova) had its own au‐
thentication system and used the term project. When authentication moved into the
OpenStack Identity Service (keystone) project, it used the term tenant to refer to a
group of users. Because of this legacy, some of the OpenStack tools refer to projects
and some refer to tenants.

This guide uses the term project, unless an example shows interaction with a tool
that uses the term tenant.

Managing Projects
Users must be associated with at least one project, though they may belong to many.
Therefore, you should add at least one project before adding users.

Adding Projects
To create a project through the dashboard:

1. Log in as an administrative user.
2. Select the “Projects” link in the left hand navigation bar.

81

3. Click on the “Create Project” button at the top right.

You are prompted for a project name and an optional, but recommended, descrip‐
tion. Select the check box at the bottom of the form to enable this project. By default,
this is enabled.

It is also possible to add project members and adjust the project quotas. We’ll discuss
those later, but in practice it can be quite convenient to deal with all these operations
at one time.

To create a project through the command-line interface (CLI):

To add a project through the command line, you must use the keystone utility, which
uses “tenant” in place of “project”:

keystone tenant-create --name=demo

This command creates a project named “demo”. Optionally, you can add a description
string by appending --description tenant-description which can be very useful.
You can also create a group in a disabled state by appending --enabled false to the
command. By default, projects are created in an enabled state.

Quotas
To prevent system capacities from being exhausted without notification, you can set
up quotas. Quotas are operational limits. For example, the number of gigabytes al‐
lowed per tenant can be controlled to ensure that a single tenant cannot consume all
of the disk space. Quotas are currently enforced at the tenant (or project) level, rather
than by user.

Using the command-line interface, you can manage quotas for the OpenStack Com‐
pute Service and the Block Storage Service.

Typically, default values are changed because a tenant requires more than the Open‐
Stack default of 10 volumes per tenant, or more than the OpenStack default of 1TB of
disk space on a Compute node.

To view all tenants, run:
$ keystone tenant-list
+----------------------------------+----------+---------+
| id | name | enabled |
+----------------------------------+----------+---------+
a981642d22c94e159a4a6540f70f9f8d	admin	True
934b662357674c7b9f5e4ec6ded4d0e7	tenant01	True
7bc1dbfd7d284ec4a856ea1eb82dca80	tenant02	True
9c554aaef7804ba49e1b21cbd97d218a	services	True
+----------------------------------+----------+---------+

82 | Chapter 9: Managing Projects and Users

Set Compute Service Quotas
As an administrative user, you can update the Compute Service quotas for an existing
tenant, as well as update the quota defaults for a new tenant.

Quota Description Property Name

Fixed Ips Number of fixed IP addresses allowed per tenant. This number
must be equal to or greater than the number of allowed
instances.

fixed-ips

Floating Ips Number of floating IP addresses allowed per tenant. floating-ips

Injected File Content
Bytes

Number of content bytes allowed per injected file. injected-file-

content-bytes

Injected File Path
Bytes

Number of bytes allowed per injected file path. injected-file-

path-bytes

Injected Files Number of injected files allowed per tenant. injected-files

Instances Number of instances allowed per tenant. instances

Key Pairs Number of key pairs allowed per user. key-pairs

Metadata Items Number of metadata items allowed per instance. metadata-items

Ram Megabytes of instance ram allowed per tenant. ram

Security Group Rules Number of rules per security group. security-group-

rules

Security Groups Number of security groups per tenant. security-groups

VCPUs Number of instance cores allowed per tenant. cores

View and update Compute quotas for a tenant (project)
As an administrative user, you can use the nova quota-* commands, which are pro‐
vided by the python-novaclient package, to view and update tenant quotas.

Quotas | 83

To view and update default quota values

1. List all default quotas for all tenants, as follows:
$ nova quota-defaults

For example:
$ nova quota-defaults
+-----------------------------+-------+
| Property | Value |
+-----------------------------+-------+
metadata_items	128
injected_file_content_bytes	10240
ram	51200
floating_ips	10
key_pairs	100
instances	10
security_group_rules	20
injected_files	5
cores	20
fixed_ips	-1
injected_file_path_bytes	255
security_groups	10
+-----------------------------+-------+

2. Update a default value for a new tenant, as follows:
$ nova quota-class-update default key value

For example:
$ nova quota-class-update default instances 15

To view quota values for a tenant (project)

1. Place the tenant ID in a useable variable, as follows:
$ tenant=$(keystone tenant-list | awk '/tenantName/ {print $2}')

2. List the currently set quota values for a tenant, as follows:
$ nova quota-show --tenant $tenant

For example:
$ nova quota-show --tenant $tenant
+-----------------------------+-------+
| Property | Value |
+-----------------------------+-------+
metadata_items	128
injected_file_content_bytes	10240
ram	51200
floating_ips	12
key_pairs	100
instances	10

84 | Chapter 9: Managing Projects and Users

security_group_rules	20
injected_files	5
cores	20
fixed_ips	-1
injected_file_path_bytes	255
security_groups	10
+-----------------------------+-------+

To update quota values for a tenant (project)

1. Obtain the tenant ID, as follows:
$ tenant=$(keystone tenant-list | awk '/tenantName/ {print $2}')

2. Update a particular quota value, as follows:
nova quota-update --quotaName quotaValue tenantID

For example:
nova quota-update --floating-ips 20 $tenant
nova quota-show --tenant $tenant
+-----------------------------+-------+
| Property | Value |
+-----------------------------+-------+
metadata_items	128
injected_file_content_bytes	10240
ram	51200
floating_ips	20
key_pairs	100
instances	10
security_group_rules	20
injected_files	5
cores	20
fixed_ips	-1
injected_file_path_bytes	255
security_groups	10
+-----------------------------+-------+

To view a list of options for the quota-update command, run:
$ nova help quota-update

Set Block Storage quotas
As an administrative user, you can update the Block Storage Service quotas for a ten‐
ant, as well as update the quota defaults for a new tenant.

Quotas | 85

Property Name Description

gigabytes Number of volume gigabytes allowed per tenant.

snapshots Number of Block Storage snapshots allowed per tenant.

volumes Number of Block Storage volumes allowed per tenant.

View and update Block Storage quotas for a tenant (project)
As an administrative user, you can use the cinder quota-* commands, which are pro‐
vided by the python-cinderclient package, to view and update tenant quotas.

To view and update default Block Storage quota values

1. List all default quotas for all tenants, as follows:
$ cinder quota-defaults

For example:
$ cinder quota-defaults
+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	10
+-----------+-------+

2. To update a default value for a new tenant, update the property in the /etc/
cinder/cinder.conf file.

To view Block Storage quotas for a tenant

1. View quotas for the tenant, as follows:
cinder quota-show tenantName

For example:
cinder quota-show tenant01
+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	10
+-----------+-------+

To update Compute service quotas

86 | Chapter 9: Managing Projects and Users

1. Place the tenant ID in a useable variable, as follows:
$ tenant=$(keystone tenant-list | awk '/tenantName/ {print $2}')

2. Update a particular quota value, as follows:
cinder quota-update --quotaName NewValue tenantID

For example:
cinder quota-update --volumes 15 $tenant
cinder quota-show tenant01
+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	15
+-----------+-------+

User Management
The command line tools for managing users are inconvenient to use directly. They
require issuing multiple commands to complete a single task, and they use UUIDs
rather than symbolic names for many items. In practice, humans typically do not use
these tools directly. Fortunately, the OpenStack Dashboard provides a reasonable in‐
terface to this. In addition, many sites write custom tools for local needs to enforce
local policies and provide levels of self service to users that aren’t currently available
with packaged tools.

Creating New Users
To create a user, you need the following information:

• Username
• Email address
• Password
• Primary project
• Role

Username and email address are self-explanatory, though your site may have local
conventions you should observe. Setting and changing passwords in the Identity Ser‐
vice requires administrative privileges. As of the Folsom release, users cannot change
their own passwords. This is a large driver for creating local custom tools, and must
be kept in mind when assigning and distributing passwords. The primary project is

User Management | 87

simply the first project the user is associated with and must exist prior to creating the
user. Role is almost always going to be “member”. Out of the box, OpenStack comes
with two roles defined:

• “member”: a typical user.
• “admin”: an administrative super user which has full permissions across all

projects and should be used with great care.

It is possible to define other roles, but doing so is uncommon.

Once you’ve gathered this information, creating the user in the Dashboard is just an‐
other web form similar to what we’ve seen before and can be found on the “Users”
link in the “Admin” navigation bar and then clicking the “Create User” button at the
top right.

Modifying users is also done from this “Users” page. If you have a large number of
users, this page can get quite crowded. The “Filter” search box at the top of the page
can be used to limit the users listing. A form very similar to the user creation dialog
can be pulled up by selecting “Edit” from the actions drop down menu at the end of
the line for the user you are modifying.

Associating Users with Projects
Many sites run with users being associated with only one project. This is a more con‐
servative and simpler choice both for administration and for users. Administratively
if a user reports a problem with an instance or quota it is obvious which project this
relates to as well. Users needn’t worry about what project they are acting in if they are
only in one project. However, note that, by default, any user can affect the resources
of any other user within their project. It is also possible to associate users with multi‐
ple projects if that makes sense for your organization.

Associating existing users with an additional project or removing them from an older
project is done from the “Projects” page of the Dashboard by selecting the “Modify
Users” from the “Actions” column:

88 | Chapter 9: Managing Projects and Users

From this view you can do a number of useful and a few dangerous things.

The first column of this form, titled “All Users”, will include a list of all the users in
your cloud who are not already associated with this project and the second all the
users who are. These can be quite long, but can be limited by typing a substring of the
user name you are looking for in the filter field at the top of the column.

From here, click the + icon to add users to the project. Click the - to remove them.

The dangerous possibility comes in the ability to change member roles. This is the
drop down list after the user name in the “Project Members” list. In virtually all cases
this value should be set to “Member”. This example purposefully show and adminis‐
trative user where this value is “admin”.

The “admin” is global not per project so granting a user the admin role in any project
gives the administrative rights across the whole cloud.

Typical use is to only create administrative users in a single project, by convention the
“admin” project which is created by default during cloud setup. If your administrative
users also use the cloud to launch and manage instances it is strongly recommended
that you use separate user accounts for administrative access and normal operations
and that they be in distinct projects.

Customizing Authorization
The default authorization settings only allow administrative users to create resources
on behalf of a different project. OpenStack handles two kind of authorization policies:

• Operation-based: policies specify access criteria for specific operations, possibly
with fine-grained control over specific attributes.

Associating Users with Projects | 89

• Resource-based: whether access to a specific resource might be granted or not
according to the permissions configured for the resource (currently available on‐
ly for the network resource). The actual authorization policies enforced in an
OpenStack service vary from deployment to deployment.

The policy engine reads entries from the policy.json file. The actual location of this
file might vary from distribution to distribution, for nova it is typically in /etc/nova/
policy.json. You can update entries while the system is running, and you do not
have to restart services. Currently the only way to update such policies is to edit the
policy file.

The OpenStack service’s policy engine matches a policy directly. A rule indicates eval‐
uation of the elements of such policies. For instance, in a compute:create:
[["rule:admin_or_owner"]] statement, the policy is compute:create, and the rule is
admin_or_owner.

Policies are triggered by an OpenStack policy engine whenever one of them matches
an OpenStack API operation or a specific attribute being used in a given operation.
For instance, the engine tests the create:compute policy every time a user sends a
POST /v2/{tenant_id}/servers request to the OpenStack Compute API server. Pol‐
icies can be also related to specific API extensions. For instance, if a user needs an
extension like compute_extension:rescue the attributes defined by the provider ex‐
tensions trigger the rule test for that operation.

An authorization policy can be composed by one or more rules. If more rules are
specified, evaluation policy is successful if any of the rules evaluates successfully; if an
API operation matches multiple policies, then all the policies must evaluate success‐
fully. Also, authorization rules are recursive. Once a rule is matched, the rule(s) can
be resolved to another rule, until a terminal rule is reached. These are the rules de‐
fined:

• Role-based rules: evaluate successfully if the user submitting the request has the
specified role. For instance "role:admin"is successful if the user submitting the
request is an administrator.

• Field-based rules: evaluate successfully if a field of the resource specified in the
current request matches a specific value. For instance "field:net

works:shared=True" is successful if the attribute shared of the network resource
is set to true.

• Generic rules: compare an attribute in the resource with an attribute extracted
from the user’s security credentials and evaluates successfully if the comparison is
successful. For instance "tenant_id:%(tenant_id)s" is successful if the tenant

90 | Chapter 9: Managing Projects and Users

identifier in the resource is equal to the tenant identifier of the user submitting
the request.

Here are snippets of the default nova policy.json file:

{
 "context_is_admin": [["role:admin"]],
 "admin_or_owner": [["is_admin:True"], ["project_id:%(project_id)s"]],
[1]
 "default": [["rule:admin_or_owner"]], [2]
 "compute:create": [],
 "compute:create:attach_network": [],
 "compute:create:attach_volume": [],
 "compute:get_all": [],
 "admin_api": [["is_admin:True"]],
 "compute_extension:accounts": [["rule:admin_api"]],
 "compute_extension:admin_actions": [["rule:admin_api"]],
 "compute_extension:admin_actions:pause": [["rule:admin_or_owner"]],
 "compute_extension:admin_actions:unpause": [["rule:admin_or_owner"]],
 ...
 "compute_extension:admin_actions:migrate": [["rule:admin_api"]],
 "compute_extension:aggregates": [["rule:admin_api"]],
 "compute_extension:certificates": [],
 ...
 "compute_extension:flavorextraspecs": [],
 "compute_extension:flavormanage": [["rule:admin_api"]], [3]
 }

[1] Shows a rule which evaluates successfully if the current user is an administrator or
the owner of the resource specified in the request (tenant identifier is equal).

[2] Shows the default policy which is always evaluated if an API operation does not
match any of the policies in policy.json.

[3] Shows a policy restricting the ability of manipulating flavors to administrators us‐
ing the Admin API only.

In some cases, some operations should be restricted to administrators only. There‐
fore, as a further example, let us consider how this sample policy file could be modi‐
fied in a scenario where we enable users to create their own flavors:

"compute_extension:flavormanage": [],

Users that Disrupt Other Users
Users on your cloud can disrupt other users, sometimes intentionally and maliciously
and other times by accident. Understanding the situation allows you to make a better
decision on how to handle the disruption.

Associating Users with Projects | 91

For example: A group of users have instances that are utilizing a large amount of
compute resources for very compute-intensive tasks. This is driving the load up on
compute nodes and affecting other users. In this situation, review your user use cases.
You may find that high compute scenarios are common and should then plan for
proper segregation in your cloud such as host aggregation or regions.

Another example is a user consuming a very large amount of bandwidth. Again, the
key is to understand what the user is doing. If they naturally need a high amount of
bandwidth, you might have to limit their transmission rate as to not affect other users
or move them to an area with more bandwidth available. On the other hand, maybe
the user’s instance has been hacked and is part of a botnet launching DDOS attacks.
Resolution to this issue is the same as if any other server on your network has been
hacked. Contact the user and give them time to respond. If they don’t respond, shut
the instance down.

A final example is if a user is hammering cloud resources repeatedly. Contact the user
and learn what they are trying to do. Maybe they don’t understand that what they’re
doing is inappropriate or maybe there is an issue with the resource they are trying to
access that is causing their requests to queue or lag.

One key element of systems administration that is often overlooked is that end users
are the reason why systems administrators exist. Don’t go the BOFH route and termi‐
nate every user who causes an alert to go off. Work with them to understand what
they’re trying to accomplish and see how your environment can better assist them in
achieving their goals.

92 | Chapter 9: Managing Projects and Users

CHAPTER 10

User-facing Operations

This guide is for OpenStack operators and does not seek to be an exhaustive reference
for users, but as an operator it is important that you have a basic understanding of
how to use the cloud facilities. This chapter looks at OpenStack from a basic user per‐
spective, which helps you understand your users’ needs and determine when you get
a trouble ticket whether it is a user issue or a service issue. The main concepts cov‐
ered are images, flavors, security groups, blocks storage and instances.

Images
OpenStack images can often be thought of as “virtual machine templates”. Images can
also be standard installation mediums like ISO images. Essentially, they contain boot‐
able file systems which are used to launch instances.

Adding Images
Several pre-made images exist and can easily be imported into the Image Service. A
common image to add is the CirrOS image which is very small and used for testing
purposes. To add this image, simply do:

wget https://launchpad.net/cirros/trunk/0.3.0/+download/cirros-0.3.0-x86_64-
disk.img # glance image-create --name='cirros image' --is-public=true --
container-format=bare --disk-format=qcow2 < cirros-0.3.0-x86_64-disk.img

The glance image-create command provides a large set of options to give your im‐
age. For example, the min-disk option is useful for images that require root disks of a
certain size (for example, large Windows images). To view these options, do:

$ glance help image-create

93

The location option is important to note. It does not copy the entire image into
Glance, but reference an original location to where the image can be found. Upon
launching an instance of that image, Glance accesses the image from the location
specified.

The copy-from option copies the image from the location specified into
the /var/lib/glance/images directory. The same thing is done when using the
STDIN redirection such as shown in the example.

Run the following command to view the properties of existing images:

$ glance details

Deleting Images
To delete an image, just execute:

$ glance image-delete <image uuid>

Deleting an image does not affect instances or snapshots that were
based off the image.

Other CLI Options
A full set of options can be found using:

$ glance help

or the OpenStack Image Service CLI Guide. (http://docs.openstack.org/cli/quick-
start/content/glance-cli-reference.html)

The Image Service and the Database
The only thing that Glance does not store in a database is the image itself. The Glance
database has two main tables:

• images
• image_properties

Working directly with the database and SQL queries can provide you with custom
lists and reports of Glance images. Technically, you can update properties about im‐
ages through the database, although this is not generally recommended.

94 | Chapter 10: User-facing Operations

http://docs.openstack.org/cli/quick-start/content/glance-cli-reference.html

Example Image Service Database Queries
One interesting example is modifying the table of images and the owner of that im‐
age. This can be easily done if you simply display the unique ID of the owner, this
example goes one step further and displays the readable name of the owner:

$ mysql> select glance.images.id, glance.images.name, keystone.tenant.name,
is_public from glance.images inner join keystone.tenant on glance.images.own-
er=keystone.tenant.id;

Another example is displaying all properties for a certain image:

$ mysql> select name, value from image_properties where id = <image_id>

Flavors
Virtual hardware templates are called “flavors” in OpenStack, defining sizes for RAM,
disk, number of cores and so on. The default install provides a range of five flavors.
These are configurable by admin users (this too is configurable and may be delegated
by redefining the access controls for compute_extension:flavormanage in /etc/
nova/policy.json on the nova-api server). To get a list of available flavors on your
system run:

$ nova flavor-list

+----+-----------+-----------+------+-----------+\+-------+-\+-------------+
| ID | Name | Memory_MB | Disk | Ephemeral |/| VCPUs | /| extra_specs |
+----+-----------+-----------+------+-----------+\+-------+-\+-------------+
1	m1.tiny	512	1	0	/	1	/	{}
2	m1.small	2048	10	20	\| 1	\| {}		
3	m1.medium	4096	10	40	/	2	/	{}
4	m1.large	8192	10	80	\| 4	\| {}		
5	m1.xlarge	16384	10	160	/	8	/	{}
+----+-----------+-----------+------+-----------+\+-------+-\+-------------+

The nova flavor-create command allows authorized users to create new flavors.
Additional flavor manipulation commands can be shown with the command:

$ nova help | grep flavor.

Flavors define a number of elements:

Flavors | 95

Column Description

ID A unique numeric id.

Name a descriptive name. xx.size_name is conventional not required, though some third party
tools may rely on it.

Memory_MB Memory_MB: virtual machine memory in megabytes.

Disk Virtual root disk size in gigabytes. This is an ephemeral disk the base image is copied into.
When booting from a persistent volume it is not used. The “0” size is a special case which
uses the native base image size as the size of the ephemeral root volume.

Ephemeral Specifies the size of a secondary ephemeral data disk. This is an empty, unformatted disk and
exists only for the life of the instance.

Swap Optional swap space allocation for the instance.

VCPUs Number of virtual CPUs presented to the instance.

RXTX_Factor Optional property allows created servers to have a different bandwidth cap than that defined
in the network they are attached to. This factor is multiplied by the rxtx_base property of
the network. Default value is 1.0 (that is, the same as attached network).

Is_Public Boolean value, whether flavor is available to all users or private to the tenant it was created
in. Defaults to True.

extra_specs Additional optional restrictions on which compute nodes the flavor can run on. This is
implemented as key/value pairs that must match against the corresponding key/value pairs
on compute nodes. Can be used to implement things like special resources (such as flavors
that can only run on compute nodes with GPU hardware).

How do I modify an existing flavor?
Unfortunately, OpenStack does not provide an interface for modifying flavors, only
for creating and deleting them. The OpenStack Dashboard simulates the ability to
modify a flavor by deleting an existing flavor and creating a new one with the same
name.

96 | Chapter 10: User-facing Operations

Security groups
One of the most common new user issues with OpenStack is failing to set appropriate
security group when launching an instance and are then unable to contact the in‐
stance on the network.

Security groups are sets of IP filter rules that are applied to an instance’s networking.
They are project specific and project members can edit the default rules for their
group and add new rules sets. All projects have a “default” security group which is
applied to instances which have no other security group defined, unless changed this
security group denies all incoming traffic.

The nova.conf option allow_same_net_traffic (which defaults to true) globally
controls whether the rules applies to hosts which share a network. When set to true,
hosts on the same subnet are not filtered and are allowed to pass all types of traffic
between them. On a flat network, this allows all instances from all projects unfiltered
communication. With VLAN networking, this allows access between instances within
the same project. If allow_same_net_traffic is set to false, security groups are en‐
forced for all connections, in this case it is possible for projects to simulate the al
low_same_net_traffic by configuring their default security group to allow all traffic
from their subnet.

Security groups for the current project can be found on the Horizon dashboard under
“Access & Security” to see details of an existing group select the “edit” action for that
security group. Obviously modifying existing groups can be done from this “edit” in‐
terface. There is a “Create Security Group” button on the main Access & Security
page for creating new groups. We discuss the terms used in these fields when we ex‐
plain the command line equivalents.

From the command line you can get a list of security groups for the project you’re
acting in using the nova command:

$ nova secgroup-list

+---------+-------------+
| Name | Description |
+---------+-------------+
| default | default |
| open | all ports |
+---------+-------------+

To view the details of the “open” security group:

$ nova secgroup-list-rules open

Security groups | 97

 +-------------+-----------+---------+-----------+--------------+
 | IP Protocol | From Port | To Port | IP Range | Source Group |
 +-------------+-----------+---------+-----------+--------------+
icmp	-1	255	0.0.0.0/0	
tcp	1	65535	0.0.0.0/0	
udp	1	65535	0.0.0.0/0	
 +-------------+-----------+---------+-----------+--------------+

These rules are all “allow” type rules as the default is deny. The first column is the IP
protocol (one of icmp, tcp, or udp) the second and third columns specify the affected
port range. The third column specifies the IP range in CIDR format. This example
shows the full port range for all protocols allowed from all IPs.

As noted in the previous chapter the number of rules per security group is controlled
by the quota_security_group_rules and the number of allowed security groups per
project is controlled by the quota_security_groups quota.

When adding a new security group you should pick a descriptive but brief name. This
name shows up in brief descriptions of the instances that use it where the longer de‐
scription field often does not. Seeing that an instance is using security group “http” is
much easier to understand than “bobs_group” or “secgrp1”.

As an example, let’s create a security group that allows web traffic anywhere on the
internet. We’ll call this “global_http” which is clear and reasonably concise, encapsu‐
lating what is allowed and from where. From the command line:

+-------------+-------------------------------------+
| Name | Description |
+-------------+-------------------------------------+
| global_http | allow web traffic from the internet |
+-------------+-------------------------------------+

This creates the empty security group to make it do what we want we need to add
some rules.

$ nova secgroup-add-rule <secgroup> <ip-proto> <from-port> <to-port>
 <cidr>
$ nova secgroup-add-rule global_http tcp 80 80 0.0.0.0/0
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 80 | 80 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

Note that the arguments are positional and the “from-port” and “to-port” arguments
specify the local port range connections are allowed to not source and destination
ports of the connection. More complex rule sets can be built up through multiple in‐
vocations of nova secgroup-add-rule. For example if you want to pass both http and
https traffic:

$ nova secgroup-add-rule global_http tcp 443 443 0.0.0.0/0

98 | Chapter 10: User-facing Operations

+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 443 | 443 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

Despite only outputting the newly added rule this operation is additive:

$ nova secgroup-list-rules global_http

+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 80 | 80 | 0.0.0.0/0 | |
| tcp | 443 | 443 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

The inverse operation is called secgroup-delete-rule, using the same format. Whole
security groups can be removed with secgroup-delete.

To create security group rules for a cluster of instances:

SourceGroups are a special dynamic way of defining the CIDR of allowed sources.
The user specifies a SourceGroup (Security Group name), all the users’ other Instan‐
ces using the specified SourceGroup are selected dynamically. This alleviates the need
for a individual rules to allow each new member of the cluster.usage:

usage: nova secgroup-add-group-rule <secgroup> <source-group> <ip-proto>
<from-port> <to-port>

$ nova secgroup-add-group-rule cluster global-http tcp 22 22

The “cluster” rule allows ssh access from any other instance that uses the “global-http”
group.

Block Storage
OpenStack volumes are persistent block storage devices which may be attached and
detached from instances, but can only be attached to one instance at a time, similar to
an external hard drive they do not proved shared storage in the way a network file
system or object store does. It is left to the operating system in the instance to put a
file system on the block device and mount it, or not.

Similar to other removable disk technology it is important the operating system is not
trying to make use of the disk before removing it. On Linux instances this typically
involves unmounting any file systems mounted from the volume. The OpenStack vol‐
ume service cannot tell if it is safe to remove volumes from an instance so it does
what it is told. If a user tells the volume service to detach a volume from an instance
while it is being written to you can expect some level of file system corruption as well
as faults from whatever process within the instance was using the device.

Block Storage | 99

There is nothing OpenStack specific in being aware of the steps needed from with in
the instance operating system to access block devices, potentially formatting them for
first use and being cautious when removing devices. What is specific is how to create
new volumes and attach and detach them from instances. These operations can all be
done from the “Volumes” page of the Dashboard or using the cinder command line
client.

To add new volumes you only need a name and a volume size in gigabytes, ether put
these into the “create volume” web form or using the command line:

$ cinder create --display-name test-volume 10

This creates a 10 GB volume named “test-volume.” To list existing volumes and the
instances they are connected to if any:

$ cinder list

+------------+---------+--------------------+------+-------------+-------------+
| ID | Status | Display Name | Size | Volume Type | Attached to |
+------------+---------+--------------------+------+-------------+-------------+
| 0821...19f | active | test-volume | 10 | None | |
+------------+---------+--------------------+------+-------------+-------------+

The Block Storage service also allows for creating snapshots of volumes. Remember
this is a block level snapshot which is crash consistent so it is best if the volume is not
connected to an instance when the snapshot is taken and second best if the volume is
not in use on the instance it is attached to. If the volume is under heavy use, the snap‐
shot may have an inconsistent file system. In fact, by default, the volume service does
not take a snapshot of a volume that is attached to an image, though it can be forced.
To take a volume snapshot either select “Create Snapshot” from the actions column
next to the volume name in the dashboard volume page, or from the command line:

usage: cinder snapshot-create [--force <True|False>]
[--display-name <display-name>]
[--display-description <display-description>]
<volume-id>
Add a new snapshot.
Positional arguments: <volume-id> ID of the volume to snapshot
Optional arguments: --force <True|False> Optional flag to indicate whether to
snapshot a volume even if its attached to an instance.
(Default=False) --display-name <display-name> Optional
snapshot name. (Default=None)
--display-description <display-description>
Optional snapshot description. (Default=None)

Block Storage Creation Failures
If a user tries to create a volume and it immediately goes into an error state, the best
way to troubleshoot is to grep the Cinder log files for the volume’s UUID. First try the

100 | Chapter 10: User-facing Operations

log files on the cloud controller and then try the storage node where they volume was
attempted to be created:

grep 903b85d0-bacc-4855-a261-10843fc2d65b /var/log/cinder/*.log

Instances
Instances are the running virtual machines within an OpenStack cloud. This section
deals with how to work with them and their underlying images, their network prop‐
erties and how they are represented in the database.

Starting Instances
To launch an instance you need to select an image, a flavor, and a name. The name
needn’t be unique but your life is simpler if it is because many tools will use the name
in place of UUID so long as the name is unique. This can be done from the dash‐
board either from the “Launch Instance” button on the “Instances” page or by select‐
ing the “Launch” action next to an image or snapshot on the “Images & Snapshots”
page.

On the command line:

$ nova boot --flavor <flavor> --image <image> <name>

There are a number of optional items that can be specified. You should read the rest
of this instances section before trying to start one, but this is the base command that
later details are layered upon.

To delete instances from the dashboard select the “Terminate instance” action next to
the instance on the “Instances” page, from the command line:

$ nova delete <instance-uuid>

It is important to note that powering off an instance does not terminate it in the
OpenStack sense.

Instance Boot Failures
If an instance fails to start and immediately moves to “Error” state there are a few
different ways to track down what has gone wrong. Some of these can be done with
normal user access while others require access to your log server or compute nodes.

The simplest reasons for nodes to fail to launch are quota violations or the scheduler
being unable to find a suitable compute node on which to run the instance. In these
cases the error is apparent doing a nova show on the faulted instance.

$ nova show test-instance

Instances | 101

+------------------------+---\
| Property | Value /
+------------------------+---\
| OS-DCF:diskConfig | MANUAL /
| OS-EXT-STS:power_state | 0 \
| OS-EXT-STS:task_state | None /
| OS-EXT-STS:vm_state | error \
| accessIPv4 | /
| accessIPv6 | \
| config_drive | /
| created | 2013-03-01T19:28:24Z \
| fault | {u'message': u'NoValidHost', u'code': 500, u'created/
| flavor | xxl.super (11) \
| hostId | /
| id | 940f3b2f-bd74-45ad-bee7-eb0a7318aa84 \
| image | quantal-test (65b4f432-7375-42b6-a9b8-7f654a1e676e) /
| key_name | None \
| metadata | {} /
| name | test-instance \
| security_groups | [{u'name': u'default'}] /
| status | ERROR \
| tenant_id | 98333a1a28e746fa8c629c83a818ad57 /
| updated | 2013-03-01T19:28:26Z \
| user_id | a1ef823458d24a68955fec6f3d390019 /
+------------------------+---\

In this case looking at the “fault” message shows NoValidHost indicating the schedu‐
ler was unable to match the instance requirements.

If nova show does not sufficiently explain the failure searching for the instance UUID
in the nova-compute.log on the compute node it was scheduled on or the nova-
scheduler.log on your scheduler hosts is a good place to start looking for lower level
problems.

Using nova show as an admin user will show the compute node the instance was
scheduled on as hostId, if the instance failed during scheduling this field is blank.

Instance-specific Data
There are a variety of ways to inject custom data including authorized_keys key injec‐
tion, user-data, metadata service, and file injection.

To clarify user-data versus metadata, understand that “user-data” is a chunk of data,
set when an instance is not running. This user-data is accessible from within the in‐
stance when it is running. People use this user-data to store configuration, a script, or
anything the tenant wants.

For Compute, instance metadata is a collection of key/value pairs associated with an
instance. Compute reads and writes to these key/value pairs any time during the in‐
stance lifetime, from inside and outside the instance, when the end-user uses the

102 | Chapter 10: User-facing Operations

Compute API to do so. However, you cannot query the instance associated key/value
pairs via the metadata service that is compatible with the Amazon EC2 metadata ser‐
vice.

Users can generate and register ssh keys using the nova command

$ nova keypair-add mykey > mykey.pem

This creates a key named mykey which you can associate with instances. The file my‐
key.pem is the private key which should be saved to a secure location as it allows root
access to instances the mykey key is associated with.

You can register an existing public key with OpenStack using this command

$ nova keypair-add --pub-key mykey.pub mykey

You must have the matching private key to access instances associated with this key.

To associate a key with an instance on boot add --key_name mykey to your command
line for example:

$ nova boot --image ubuntu-cloudimage --flavor 1 --key_name mykey

When booting a server, you can also add metadata, so that you can more easily iden‐
tify it amongst other running instances. Use the --meta option with a key=value pair,
where you can make up the string for both the key and the value. For example, you
could add a description and also the creator of the server.

$ nova boot --image=test-image --flavor=1 smallimage --meta description='Small
test image'

When viewing the server information, you can see the metadata included on the met‐
adata line:

$ nova show smallimage

+------------------------+---+
| Property | Value |
+------------------------+---+
OS-DCF:diskConfig	MANUAL
OS-EXT-STS:power_state	1
OS-EXT-STS:task_state	None
OS-EXT-STS:vm_state	active
accessIPv4	
accessIPv6	
config_drive	
created	2012-05-16T20:48:23Z
flavor	m1.small
hostId	de0...487
id	8ec...f915
image	natty-image
key_name	
metadata	{u'description': u'Small test image'}
name	smallimage2

Instances | 103

private network	172.16.101.11
progress	0
public network	10.4.113.11
status	ACTIVE
tenant_id	e83...482
updated	2012-05-16T20:48:35Z
user_id	de3...0a9
+------------------------+---+

User Data is a special key in the metadata service which holds a file that cloud aware
applications within the guest instance can access. For example cloudinit (https://
help.ubuntu.com/community/CloudInit) is an open source package from Ubuntu
that handles early initialization of a cloud instance that makes use of this user data.

This user-data can be put in a file on your local system and then passed in at instance
creation with the flag --user-data <user-data-file> for example:

$ nova boot --image ubuntu-cloudimage --flavor 1 --user-data mydata.file

Arbitrary local files can also be placed into the instance file system at creation time
using the --file <dst-path=src-path> option. You may store up to 5 files. For example
if you have a special authorized_keys file named special_authorized_keysfile that you
want to put on the instance rather than using the regular ssh key injection for some
reason you can use the following command:

$ nova boot --image ubuntu-cloudimage --flavor 1 --file /root/.ssh/author-
ized_keys=special_authorized_keysfile

Associating Security Groups
Security groups as discussed earlier are typically required to allow network traffic to
an instance, unless the default security group for a project has been modified to be
more permissive.

Adding security groups is typically done on instance boot. When launching from the
dashboard this is on the “Access & Security” tab of the “Launch Instance” dialog.
When launching from the command line append --security-groups with a comma
separated list of security groups.

It is also possible to add and remove security groups when an instance is running.
Currently this is only available through the command line tools.

$ nova add-secgroup <server> <securitygroup>

$ nova remove-secgroup <server> <securitygroup>

Floating IPs
Projects have a quota controlled number of Floating IPs, however these need to be
allocated by a user before they are available for use. To allocate a Floating IP to a

104 | Chapter 10: User-facing Operations

https://help.ubuntu.com/community/CloudInit

project there is an “Allocate IP to Project” button on the “Access & Security” page of
the dashboard or on the command line by using:

$ nova floating-ip-create

Once allocated, Floating IP can be assigned to running instances from the Dashboard
either by selecting the “Associate Floating IP” from the actions drop down next to the
IP on the “Access & Security” page or the same action next to the instance you wish to
associate it with on the “Instances” page. The inverse action, “Dissociate Floating IP”,
is only available from the “Access & Security” page and not from the Instances page.

From the command line, enter the following command to complete these tasks:

$ nova add-floating-ip <server> <address>

$ nova remove-floating-ip <server> <address>

Attaching Block Storage
You can attach block storage to instances from the dashboard on the Volumes page.
Click the Edit Attachments action next to the volume you wish to attach.

To perform this action from command line, run the following command:

$ nova volume-attach <server> <volume>

You can also specify block device mapping at instance boot time through the nova
command-line client, as follows:

--block-device-mapping <dev-name=mapping>

The block device mapping format is <dev-name=<id>:<type>:<size(GB)>:<delete-
on-terminate>, where:

dev-name
A device name where the volume is attached in the system at /dev/dev_name .

id

The ID of the volume to boot from, as shown in the output of nova volume-list.

type
Either snap, which means that the volume was created from a snapshot, or any‐
thing other than snap (a blank string is valid). In the example above, the volume
was not created from a snapshot, so we leave this field blank in our example be‐
low.

size (GB)
The size of the volume, in GB. It is safe to leave this blank and have the Compute
service infer the size.

Attaching Block Storage | 105

delete-on-terminate
A boolean to indicate whether the volume should be deleted when the instance is
terminated. True can be specified as True or 1. False can be specified as False or
0.

If you have previously prepared the block storage with a bootable file system image it
is even possible to boot from persistent block storage. The following example will at‐
tempt boot from volume with ID=13, it does not delete on terminate. Replace the --
key-name with a valid keypair name:

$ nova boot --flavor 2 --key-name mykey --block-device-mapping vda=13:::0 boot-
from-vol-test

Because of bug 1163566 (https://bugs.launchpad.net/nova/+bug/1163566) you must
specify an image when booting from a volume in Horizon, even though this image is
not used.

To boot normally from an image and attach block storage, map to a device other than
vda.

Taking Snapshots
OpenStack’s snapshot mechanism allows you to create new images from running in‐
stances. This is a very convenient for upgrading base images or taking a published
image and customizing for local use. To snapshot a running instance to an image us‐
ing the CLI:

$ nova image-create <instance name or uuid> <name of new image>

The Dashboard interface for snapshots can be confusing because the Images & Snap‐
shots page splits content up into:

• Images
• Instance snapshots
• Volume snapshots

However, an instance snapshot is an image. The only difference between an image
that you upload directly to glance and an image you create by snapshot is that an im‐
age created by snapshot has additional properties in the glance database. These prop‐
erties are found in the image_properties table, and include:

106 | Chapter 10: User-facing Operations

https://bugs.launchpad.net/nova/+bug/1163566

name value

image_type snapshot

instance_uuid <uuid of instance that was snapshotted>

base_image_ref <uuid of original image of instance that was snapshotted>

image_location snapshot

Ensuring snapshots are consistent
Content from Sébastien Han’s OpenStack: Perform Consistent Snapshots blog entry
(http://www.sebastien-han.fr/blog/2012/12/10/openstack-perform-consistent-
snapshots/)

A snapshot captures the state of the file system, but not the state of the memory.
Therefore, to ensure your snapshot contains the data that you want, before your
snapshot you need to ensure that:

• Running programs have written their contents to disk
• The file system does not have any “dirty” buffers: where programs have issued the

command to write to disk, but the operating system has not yet done the write

To ensure that important services have written their contents to disk (such as, databa‐
ses), we recommend you read the documentation for those applications to determine
what commands to issue to have them sync their contents to disk. If you are unsure
how to do this, the safest approach is to simply stop these running services normally.

To deal with the “dirty” buffer issue, we recommend using the sync command before
snapshotting:

sync

Running sync writes dirty buffer (buffered block that have been modified but not
written yet to the disk block) to disk.

Just running sync is not enough to ensure the file system is consistent. We recom‐
mend you use the fsfreeze tool, which halts new access to the file system and create
a stable image on disk that is suitable for snapshotting. fsfreeze supports several file
systems, including ext3, ext4, and XFS. If your virtual machine instance is running on
Ubuntu, install the util-linux package to get fsfreeze:

apt-get install util-linux

If your operating system doesn’t have a version of fsfreeze available, you can use
xfs_freeze instead, which is available on Ubuntu in the xfsprogs package. Despite the

Taking Snapshots | 107

http://www.sebastien-han.fr/blog/2012/12/10/openstack-perform-consistent-snapshots/

“xfs” in the name, xfs_freeze also works on ext3 and ext4 if you are using a Linux ker‐
nel version 2.6.29 or greater, since it works at the virtual file system (VFS) level start‐
ing at 2.6.29. xfs_freeze supports the same command-line arguments as fsfreeze.

Consider the example where you want to take a snapshot of a persistent block storage
volume, detected by the guest operating system as /dev/vdb and mounted on /mnt.
The fsfreeze command accepts 2 arguments:

• -f: freeze the system
• -u: thaw (un-freeze) the system

To freeze the volume in preparation for snapshotting, you would do, as root, inside of
the instance:

fsfreeze -f /mnt

You must mount the file system before you run the fsfreeze command.

When the “fsfreeze -f ” command is issued, all ongoing transactions in the file system
are allowed to complete, new write system calls are halted, and other calls which
modify the file system are halted. Most importantly, all dirty data, metadata, and log
information are written to disk.

Once the volume has been frozen, do not attempt to read from or write to the vol‐
ume, as these operations hang. The operating system stops every I/O operation and
any I/O attempts is delayed until the file system has been unfrozen.

Once you have issued the fsfreeze command, it is safe to perform the snapshot. For
example, if your instance was named mon-instance, and you wanted to snapshot it to
an image, named mon-snapshot, you could now run the following:

$ nova image-create mon-instance mon-snapshot

When the snapshot is done, you can thaw the file system with the following com‐
mand, as root, inside of the instance:

fsfreeze -u /mnt

If you want to backup the root file system, you can’t simply do the command above
because it will freeze the prompt. Instead, run the following one-liner, as root, inside
of the instance:

fsfreeze -f / && sleep 30 && fsfreeze -u /

Instances in the Database
While instance information is stored in a number of database tables, the table opera‐
tors are most likely to need to look at in relation to user instances is the “instances”
table.

108 | Chapter 10: User-facing Operations

The instances table carries all most of the information related to both running and
deleted instances. It has a bewildering array of fields, for an exhaustive list look at the
database. These are the most useful fields for operators looking to form queries.

The “deleted” field is set to “1” if the instance has been deleted and NULL if it has not
been deleted this important for excluding deleted instances from your queries.

The “uuid” field is the UUID of the instance and is used through out other tables in
the database as a foreign key. This id is also reported in logs, the dashboard and com‐
mand line tools to uniquely identify an instance.

A collection of foreign keys are available to find relations to the instance. The most
useful of these are “user_id” and “project_id” are the UUIDs of the user who
launched the instance and the project it was launched in.

The “host” field tells which compute node is hosting the instance.

The “hostname” field holds the name of the instance when it is launched. The
“display-name” is initially the same as hostname but can be reset using the nova re‐
name command.

A number of time related fields are useful for tracking when state changes happened
on an instance:

• created_at
• updated_at
• deleted_at
• scheduled_at
• launched_at
• terminated_at

Instances in the Database | 109

CHAPTER 11

Maintenance, Failures, and Debugging

Downtime, whether planned or unscheduled, is a certainty when running a cloud.
This chapter aims to provide useful information for dealing proactively, or reactively
with these occurrences.

Cloud Controller and Storage Proxy Failures and
Maintenance
The cloud controller and storage proxy are very similar to each other when it comes
to expected and unexpected downtime. One of each server type typically runs in the
cloud, which makes them very noticeable when they are not running.

For the cloud controller, the good news is if your cloud is using the FlatDHCP multi-
host HA network mode, existing instances and volumes continue to operate while the
cloud controller is offline. However for the storage proxy, no storage traffic is possible
until it is back up and running.

Planned Maintenance
One way to plan for cloud controller or storage proxy maintenance is to simply do it
off-hours, such as at 1 or 2 A.M.. This strategy impacts fewer users. If your cloud con‐
troller or storage proxy is too important to have unavailable at any point in time, you
must look into High Availability options.

Rebooting a cloud controller or Storage Proxy
All in all, just issue the “reboot” command. The operating system cleanly shuts serv‐
ices down and then automatically reboots. If you want to be very thorough, run your
backup jobs just before you reboot.

111

After a Cloud Controller or Storage Proxy Reboots
After a cloud controller reboots, ensure that all required services were successfully
started:

ps aux | grep nova-
grep AMQP /var/log/nova/nova-*.log
ps aux | grep glance-
ps aux | grep keystone
ps aux | grep cinder

Also check that all services are functioning:

source openrc
glance index
nova list
keystone tenant-list

For the storage proxy, ensure that the Object Storage service has resumed:

ps aux | grep swift

Also check that it is functioning:

swift stat

Total Cloud Controller Failure
Unfortunately, this is a rough situation. The cloud controller is a integral part of your
cloud. If you have only one controller, many services are missing.

To avoid this situation, create a highly available cloud controller cluster. This is out‐
side the scope of this document, but you can read more in the draft OpenStack High
Availability Guide (http://docs.openstack.org/trunk/openstack-ha/content/ch-
intro.html).

The next best way is to use a configuration management tool such as Puppet to auto‐
matically build a cloud controller. This should not take more than 15 minutes if you
have a spare server available. After the controller rebuilds, restore any backups taken
(see the Backup and Recovery chapter).

Also, in practice, sometimes the nova-compute services on the compute nodes do not
reconnect cleanly to rabbitmq hosted on the controller when it comes back up after a
long reboot and a restart on the nova services on the compute nodes is required.

Compute Node Failures and Maintenance
Sometimes a compute node either crashes unexpectedly or requires a reboot for
maintenance reasons.

112 | Chapter 11: Maintenance, Failures, and Debugging

http://docs.openstack.org/trunk/openstack-ha/content/ch-intro.html
http://docs.openstack.org/trunk/openstack-ha/content/ch-intro.html

Planned Maintenance
If you need to reboot a compute node due to planned maintenance (such as a soft‐
ware or hardware upgrade), first ensure that all hosted instances have been moved off
of the node. If your cloud is utilizing shared storage, use the nova live-migration
command. First, get a list of instances that need to be moved:

nova list --host c01.example.com --all-tenants

Next, migrate them one by one:

nova live-migration <uuid> c02.example.com

If you are not using shared storage, you can use the --block-migrate option:

nova live-migration --block-migrate <uuid> c02.example.com

After you have migrated all instances, ensure the nova-compute service has stopped:

stop nova-compute

If you use a configuration management system, such as Puppet, that ensures the
nova-compute service is always running, you can temporarily move the init files:

mkdir /root/tmp
mv /etc/init/nova-compute.conf /root/tmp
mv /etc/init.d/nova-compute /root/tmp

Next, shut your compute node down, perform your maintenance, and turn the node
back on. You can re-enable the nova-compute service by undoing the previous com‐
mands:

mv /root/tmp/nova-compute.conf /etc/init
mv /root/tmp/nova-compute /etc/init.d/

Then start the nova-compute service:

start nova-compute

You can now optionally migrate the instances back to their original compute node.

After a Compute Node Reboots
When you reboot a compute node, first verify that it booted successfully. This in‐
cludes ensuring the nova-compute service is running:

ps aux | grep nova-compute
status nova-compute

Also ensure that it has successfully connected to the AMQP server:

grep AMQP /var/log/nova/nova-compute
2013-02-26 09:51:31 12427 INFO nova.openstack.common.rpc.common [-] Connected
to AMQP server on 199.116.232.36:5672

Compute Node Failures and Maintenance | 113

After the compute node is successfully running, you must deal with the instances that
are hosted on that compute node as none of them is running. Depending on your
SLA with your users or customers, you might have to start each instance and ensure
they start correctly.

Instances
You can create a list of instances that are hosted on the compute node by performing
the following command:

nova list --host c01.example.com --all-tenants

After you have the list, you can use the nova command to start each instance:

nova reboot <uuid>

Any time an instance shuts down unexpectedly, it might have prob‐
lems on boot. For example, the instance might require an fsck on
the root partition. If this happens, the user can use the Dashboard
VNC console to fix this.

If an instance does not boot, meaning virsh list never shows the instance as even
attempting to boot, do the following on the compute node:

tail -f /var/log/nova/nova-compute.log

Try executing the nova reboot command again. You should see an error message
about why the instance was not able to boot

In most cases, the error is due to something in libvirt’s XML file (/etc/libvirt/
qemu/instance-xxxxxxxx.xml) that no longer exists. You can enforce recreation of
the XML file as well as rebooting the instance by running:

nova reboot --hard <uuid>

Inspecting and Recovering Data from Failed Instances
In some scenarios, instances are running but are inaccessible through SSH and do not
respond to any command. VNC console could be displaying a boot failure or kernel
panic error messages. This could be an indication of a file system corruption on the
VM itself. If you need to recover files or inspect the content of the instance, qemu-
nbd can be used to mount the disk.

If you access or view the user’s content and data, get their approval
first!

114 | Chapter 11: Maintenance, Failures, and Debugging

To access the instance’s disk (/var/lib/nova/instances/instance-xxxxxx/disk), the fol‐
lowing steps must be followed:

1. Suspend the instance using the virsh command
2. Connect the qemu-nbd device to the disk
3. Mount the qemu-nbd device
4. Unmount the device after inspecting
5. Disconnect the qemu-nbd device
6. Resume the instance

If you do not follow the steps from 4-6, OpenStack Compute cannot manage the in‐
stance any longer. It fails to respond to any command issued by OpenStack Compute
and it is marked as shutdown.

Once you mount the disk file, you should be able access it and treat it as normal di‐
rectories with files and a directory structure. However, we do not recommend that
you edit or touch any files because this could change the acls and make the instance
unbootable if it is not already.

1. Suspend the instance using the virsh command - taking note of the internal ID.
root@compute-node:~# virsh list
Id Name State

1 instance-00000981 running
2 instance-000009f5 running
30 instance-0000274a running

root@compute-node:~# virsh suspend 30
Domain 30 suspended

2. Connect the qemu-nbd device to the disk
root@compute-node:/var/lib/nova/instances/instance-0000274a# ls -lh
total 33M
-rw-rw---- 1 libvirt-qemu kvm 6.3K Oct 15 11:31 console.log
-rw-r--r-- 1 libvirt-qemu kvm 33M Oct 15 22:06 disk
-rw-r--r-- 1 libvirt-qemu kvm 384K Oct 15 22:06 disk.local
-rw-rw-r-- 1 nova nova 1.7K Oct 15 11:30 libvirt.xml
root@compute-node:/var/lib/nova/instances/instance-0000274a# qemu-nbd -
c /dev/nbd0 `pwd`/disk

3. Mount the qemu-nbd device.
The qemu-nbd device tries to export the instance disk’s different partitions as
separate devices. For example if vda as the disk and vda1 as the root partition,
qemu-nbd exports the device as /dev/nbd0 and /dev/nbd0p1 respectively.

Compute Node Failures and Maintenance | 115

#mount the root partition of the device
root@compute-node:/var/lib/nova/instances/instance-0000274a# mount /dev/
nbd0p1 /mnt/
List the directories of mnt, and the vm's folder is display
You can inspect the folders and access the /var/log/ files

To examine the secondary or ephemeral disk, use an alternate mount point if you
want both primary and secondary drives mounted at the same time.

umount /mnt
qemu-nbd -c /dev/nbd1 `pwd`/disk.local
mount /dev/nbd1 /mnt/

root@compute-node:/var/lib/nova/instances/instance-0000274a# ls -lh /mnt/
total 76K
lrwxrwxrwx. 1 root root 7 Oct 15 00:44 bin -> usr/bin
dr-xr-xr-x. 4 root root 4.0K Oct 15 01:07 boot
drwxr-xr-x. 2 root root 4.0K Oct 15 00:42 dev
drwxr-xr-x. 70 root root 4.0K Oct 15 11:31 etc
drwxr-xr-x. 3 root root 4.0K Oct 15 01:07 home
lrwxrwxrwx. 1 root root 7 Oct 15 00:44 lib -> usr/lib
lrwxrwxrwx. 1 root root 9 Oct 15 00:44 lib64 -> usr/lib64
drwx------. 2 root root 16K Oct 15 00:42 lost+found
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 media
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 mnt
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 opt
drwxr-xr-x. 2 root root 4.0K Oct 15 00:42 proc
dr-xr-x---. 3 root root 4.0K Oct 15 21:56 root
drwxr-xr-x. 14 root root 4.0K Oct 15 01:07 run
lrwxrwxrwx. 1 root root 8 Oct 15 00:44 sbin -> usr/sbin
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 srv
drwxr-xr-x. 2 root root 4.0K Oct 15 00:42 sys
drwxrwxrwt. 9 root root 4.0K Oct 15 16:29 tmp
drwxr-xr-x. 13 root root 4.0K Oct 15 00:44 usr
drwxr-xr-x. 17 root root 4.0K Oct 15 00:44 var

4. Once you have completed the inspection, umount the mount point and release
the qemu-nbd device

root@compute-node:/var/lib/nova/instances/instance-0000274a# umount /mnt
root@compute-node:/var/lib/nova/instances/instance-0000274a# qemu-nbd -
d /dev/nbd0
/dev/nbd0 disconnected

5. Resume the instance using virsh

116 | Chapter 11: Maintenance, Failures, and Debugging

root@compute-node:/var/lib/nova/instances/instance-0000274a# virsh list
Id Name State

1 instance-00000981 running
2 instance-000009f5 running
30 instance-0000274a paused

root@compute-node:/var/lib/nova/instances/instance-0000274a# virsh resume 30
Domain 30 resumed

Volumes
If the affected instances also had attached volumes, first generate a list of instance and
volume UUIDs:

mysql> select nova.instances.uuid as instance_uuid, cinder.volumes.id as vol-
ume_uuid, cinder.volumes.status,
cinder.volumes.attach_status, cinder.volumes.mountpoint, cinder.volumes.dis-
play_name from cinder.volumes
inner join nova.instances on cinder.volumes.instance_uuid=nova.instances.uuid
 where nova.instances.host = 'c01.example.com';

You should see a result like the following:

+--------------+------------+-------+--------------+-----------+--------------+
|instance_uuid |volume_uuid |status |attach_status |mountpoint | display_name |
+--------------+------------+-------+--------------+-----------+--------------+
|9b969a05 |1f0fbf36 |in-use |attached |/dev/vdc | test |
+--------------+------------+-------+--------------+-----------+--------------+
1 row in set (0.00 sec)

Next, manually detach and reattach the volumes:

nova volume-detach <instance_uuid> <volume_uuid>
nova volume-attach <instance_uuid> <volume_uuid> /dev/vdX

Where X is the proper mount point. Make sure that the instance has successfully boo‐
ted and is at a login screen before doing the above.

Total Compute Node Failure
If a compute node fails and won’t be fixed for a few hours or ever, you can relaunch
all instances that are hosted on the failed node if you use shared storage
for /var/lib/nova/instances.

To do this, generate a list of instance UUIDs that are hosted on the failed node by
running the following query on the nova database:

mysql> select uuid from instances where host = 'c01.example.com' and deleted =
0;

Compute Node Failures and Maintenance | 117

Next, tell Nova that all instances that used to be hosted on c01.example.com are now
hosted on c02.example.com:

mysql> update instances set host = 'c02.example.com' where host = 'c01.exam-
ple.com' and deleted = 0;

After that, use the nova command to reboot all instances that were on c01.exam‐
ple.com while regenerating their XML files at the same time:

nova reboot --hard <uuid>

Finally, re-attach volumes using the same method described in Volumes.

/var/lib/nova/instances
It’s worth mentioning this directory in the context of failed compute nodes. This di‐
rectory contains the libvirt KVM file-based disk images for the instances that are hos‐
ted on that compute node. If you are not running your cloud in a shared storage envi‐
ronment, this directory is unique across all compute nodes.

/var/lib/nova/instances contains two types of directories.

The first is the _base directory. This contains all of the cached base images from
glance for each unique image that has been launched on that compute node. Files
ending in _20 (or a different number) are the ephemeral base images.

The other directories are titled instance-xxxxxxxx. These directories correspond to
instances running on that compute node. The files inside are related to one of the files
in the _base directory. They’re essentially differential-based files containing only the
changes made from the original _base directory.

All files and directories in /var/lib/nova/instances are uniquely named. The files
in _base are uniquely titled for the glance image that they are based on and the direc‐
tory names instance-xxxxxxxx are uniquely titled for that particular instance. For
example, if you copy all data from /var/lib/nova/instances on one compute node
to another, you do not overwrite any files or cause any damage to images that have
the same unique name, because they are essentially the same file.

Although this method is not documented or supported, you can use it when your
compute node is permanently offline but you have instances locally stored on it.

Storage Node Failures and Maintenance
Due to the Object Storage’s high redundancy, dealing with object storage node issues
is a lot easier than dealing with compute node issues.

118 | Chapter 11: Maintenance, Failures, and Debugging

Rebooting a Storage Node
If a storage node requires a reboot, simply reboot it. Requests for data hosted on that
node are redirected to other copies while the server is rebooting.

Shutting Down a Storage Node
If you need to shut down a storage node for an extended period of time (1+ days),
consider removing the node from the storage ring. For example:

swift-ring-builder account.builder remove <ip address of storage node>
swift-ring-builder container.builder remove <ip address of storage node>
swift-ring-builder object.builder remove <ip address of storage node>
swift-ring-builder account.builder rebalance
swift-ring-builder container.builder rebalance
swift-ring-builder object.builder rebalance

Next, redistribute the ring files to the other nodes:

for i in s01.example.com s02.example.com s03.example.com
> do
> scp *.ring.gz $i:/etc/swift
> done

These actions effectively take the storage node out of the storage cluster.

When the node is able to rejoin the cluster, just add it back to the ring. The exact syn‐
tax to add a node to your Swift cluster using swift-ring-builder heavily depends on
the original options used when you originally created your cluster. Please refer back
to those commands.

Replacing a Swift Disk
If a hard drive fails in a Object Storage node, replacing it is relatively easy. This as‐
sumes that your Object Storage environment is configured correctly where the data
that is stored on the failed drive is also replicated to other drives in the Object Storage
environment.

This example assumes that /dev/sdb has failed.

First, unmount the disk:

umount /dev/sdb

Next, physically remove the disk from the server and replace it with a working disk.

Ensure that the operating system has recognized the new disk:

dmesg | tail

You should see a message about /dev/sdb.

Storage Node Failures and Maintenance | 119

Because it is recommended to not use partitions on a swift disk, simply format the
disk as a whole:

mkfs.xfs /dev/sdb

Finally, mount the disk:

mount -a

Swift should notice the new disk and that no data exists. It then begins replicating the
data to the disk from the other existing replicas.

Handling a Complete Failure
A common way of dealing with the recovery from a full system failure, such as a pow‐
er outage of a data center is to assign each service a priority, and restore in order.

1 Internal network connectivity

2 Backing storage services

3 Public network connectivity for user Virtual Machines

4 Nova-compute, nova-network, cinder hosts

5 User virtual machines

10 Message Queue and Database services

15 Keystone services

20 cinder-scheduler

21 Image Catalogue and Delivery services

22 nova-scheduler services

98 Cinder-api

99 Nova-api services

100 Dashboard node

Use this example priority list to ensure that user affected services are restored as soon
as possible, but not before a stable environment is in place. Of course, despite being

120 | Chapter 11: Maintenance, Failures, and Debugging

listed as a single line item, each step requires significant work. For example, just after
starting the database, you should check its integrity or, after starting the Nova serv‐
ices, you should verify that the hypervisor matches the database and fix any mis‐
matches.

Configuration Management
Maintaining an OpenStack cloud requires that you manage multiple physical servers,
and this number might grow over time. Because managing nodes manually is error-
prone, we strongly recommend that you use a configuration management tool. These
tools automate the process of ensuring that all of your nodes are configured properly
and encourage you to maintain your configuration information (such as packages
and configuration options) in a version controlled repository.

Several configuration management tools are available, and this guide does not recom‐
mend a specific one. The two most popular ones in the OpenStack community are
Puppet (https://puppetlabs.com/) with available OpenStack Puppet modules (http://
github.com/puppetlabs/puppetlabs-openstack) and Chef (http://opscode.com/chef)
with available OpenStack Chef recipes (https://github.com/opscode/openstack-chef-
repo). Other newer configuration tools include Juju (https://juju.ubuntu.com/) Ansi‐
ble (http://ansible.cc) and Salt (http://saltstack.com), and more mature configuration
management tools include CFEngine (http://cfengine.com) and Bcfg2 (http://
bcfg2.org).

Working with Hardware
Similar to your initial deployment, you should ensure all hardware is appropriately
burned in before adding it to production. Run software that uses the hardware to its
limits - maxing out RAM, CPU, disk and network. Many options are available, and
normally double as benchmark software so you also get a good idea of the perfor‐
mance of your system.

Adding a Compute Node
If you find that you have reached or are reaching the capacity limit of your comput‐
ing resources, you should plan to add additional compute nodes. Adding more nodes
is quite easy. The process for adding nodes is the same as when the initial compute
nodes were deployed to your cloud: use an automated deployment system to boot‐
strap the bare-metal server with the operating system and then have a configuration
management system install and configure the OpenStack Compute service. Once the
Compute service has been installed and configured in the same way as the other com‐
pute nodes, it automatically attaches itself to the cloud. The cloud controller notices
the new node(s) and begin scheduling instances to launch there.

Configuration Management | 121

https://puppetlabs.com/
http://github.com/puppetlabs/puppetlabs-openstack
http://www.opscode.com/chef/
https://github.com/opscode/openstack-chef-repo
https://juju.ubuntu.com/
http://ansible.cc
http://ansible.cc
http://saltstack.com/
http://cfengine.com/
http://bcfg2.org/

If your OpenStack Block Storage nodes are separate from your compute nodes, the
same procedure still applies as the same queuing and polling system is used in both
services.

We recommend that you use the same hardware for new compute and block storage
nodes. At the very least, ensure that the CPUs are similar in the compute nodes to not
break live migration.

Adding an Object Storage Node
Adding a new object storage node is different than adding compute or block storage
nodes. You still want to initially configure the server by using your automated deploy‐
ment and configuration management systems. After that is done, you need to add the
local disks of the object storage node into the object storage ring. The exact command
to do this is the same command that was used to add the initial disks to the ring. Sim‐
ply re-run this command on the object storage proxy server for all disks on the new
object storage node. Once this has been done, rebalance the ring and copy the result‐
ing ring files to the other storage nodes.

If your new object storage node has a different number of disks than
the original nodes have, the command to add the new node is differ‐
ent than the original commands. These parameters vary from envi‐
ronment to environment.

Replacing Components
Failures of hardware are common in large scale deployments such as an infrastruc‐
ture cloud. Consider your processes and balance time saving against availability. For
example, an Object Storage cluster can easily live with dead disks in it for some peri‐
od of time if it has sufficient capacity. Or, if your compute installation is not full you
could consider live migrating instances off a host with a RAM failure until you have
time to deal with the problem.

Databases
Almost all OpenStack components have an underlying database to store persistent in‐
formation. Usually this database is MySQL. Normal MySQL administration is appli‐
cable to these databases. OpenStack does not configure the databases out of the ordi‐
nary. Basic administration includes performance tweaking, high availability, backup,
recovery, and repairing. For more information, see a standard MySQL administration
guide.

You can perform a couple tricks with the database to either more quickly retrieve in‐
formation or fix a data inconsistency error. For example, an instance was terminated

122 | Chapter 11: Maintenance, Failures, and Debugging

but the status was not updated in the database. These tricks are discussed throughout
this book.

Database Connectivity
Review the components configuration file to see how each OpenStack component ac‐
cesses its corresponding database. Look for either sql_connection or simply connec
tion:

grep -hE "connection ?=" /etc/nova/nova.conf /etc/glance/glance-*.conf
/etc/cinder/cinder.conf /etc/keystone/keystone.conf
 sql_connection = mysql://nova:nova@cloud.alberta.sandbox.cybera.ca/nova
 sql_connection = mysql://glance:password@cloud.example.com/glance
 sql_connection = mysql://glance:password@cloud.example.com/glance
 sql_connection=mysql://cinder:password@cloud.example.com/cinder
 connection = mysql://keystone_admin:password@cloud.example.com/keystone

The connection strings take this format:

mysql:// <username> : <password> @ <hostname> / <database name>

Performance and Optimizing
As your cloud grows, MySQL is utilized more and more. If you suspect that MySQL
might be becoming a bottleneck, you should start researching MySQL optimization.
The MySQL manual has an entire section dedicated to this topic Optimization Over‐
view (http://dev.mysql.com/doc/refman/5.5/en/optimize-overview.html).

HDWMY
Here’s a quick list of various to-do items each hour, day, week, month, and year.
Please note these tasks are neither required nor definitive, but helpful ideas:

Hourly
• Check your monitoring system for alerts and act on them.
• Check your ticket queue for new tickets.

Daily
• Check for instances in a failed or weird state and investigate why.
• Check for security patches and apply them as needed.

HDWMY | 123

http://dev.mysql.com/doc/refman/5.5/en/optimize-overview.html
http://dev.mysql.com/doc/refman/5.5/en/optimize-overview.html

Weekly
• Check cloud usage:

— User quotas
— Disk space
— Image usage
— Large instances
— Network usage (bandwidth and IP usage)

• Verify your alert mechanisms are still working.

Monthly
• Check usage and trends over the past month.
• Check for user accounts that should be removed.
• Check for operator accounts that should be removed.

Quarterly
• Review usage and trends over the past quarter.
• Prepare any quarterly reports on usage and statistics.
• Review and plan any necessary cloud additions.
• Review and plan any major OpenStack upgrades.

Semi-Annually
• Upgrade OpenStack.
• Clean up after OpenStack upgrade (any unused or new services to be aware of?)

Determining which Component Is Broken
OpenStack’s collection of different components interact with each other strongly. For
example, uploading an image requires interaction from nova-api, glance-api,
glance-registry, Keystone, and potentially swift-proxy. As a result, it is sometimes
difficult to determine exactly where problems lie. Assisting in this is the purpose of
this section.

124 | Chapter 11: Maintenance, Failures, and Debugging

Tailing Logs
The first place to look is the log file related to the command you are trying to run. For
example, if nova list is failing, try tailing a Nova log file and running the command
again:

Terminal 1:

tail -f /var/log/nova/nova-api.log

Terminal 2:

nova list

Look for any errors or traces in the log file. For more information, see the chapter on
Logging and Monitoring.

If the error indicates that the problem is with another component, switch to tailing
that component’s log file. For example, if nova cannot access glance, look at the
glance-api log:

Terminal 1:

tail -f /var/log/glance/api.log

Terminal 2:

nova list

Wash, rinse, repeat until you find the core cause of the problem.

Running Daemons on the CLI
Unfortunately, sometimes the error is not apparent from the log files. In this case,
switch tactics and use a different command, maybe run the service directly on the
command line. For example, if the glance-api service refuses to start and stay run‐
ning, try launching the daemon from the command line:

sudo -u glance -H glance-api

This might print the error and cause of the problem.

The -H flag is required when running the daemons with sudo be‐
cause some daemons will write files relative to the user’s home direc‐
tory, and this write may fail if -H is left off.

Example of Complexity
One morning, a compute node failed to run any instances. The log files were a bit
vague, claiming that a certain instance was unable to be started. This ended up being

Determining which Component Is Broken | 125

a red herring because the instance was simply the first instance in alphabetical order,
so it was the first instance that nova-compute would touch.

Further troubleshooting showed that libvirt was not running at all. This made more
sense. If libvirt wasn’t running, then no instance could be virtualized through KVM.
Upon trying to start libvirt, it would silently die immediately. The libvirt logs did not
explain why.

Next, the libvirtd daemon was run on the command line. Finally a helpful error
message: it could not connect to d-bus. As ridiculous as it sounds, libvirt, and thus
nova-compute, relies on d-bus and somehow d-bus crashed. Simply starting d-bus set
the entire chain back on track and soon everything was back up and running.

Upgrades
With the exception of Object Storage, an upgrade from one version of OpenStack to
another is a great deal of work.

The upgrade process generally follows these steps:

1. Read the release notes and documentation.
2. Find incompatibilities between different versions.
3. Plan an upgrade schedule and complete it in order on a test cluster.
4. Run the upgrade.

You can perform an upgrade while user instances run. However, this strategy can be
dangerous. Don’t forget appropriate notice to your users, and backups.

The general order that seems to be most successful is:

1. Upgrade the OpenStack Identity service (keystone).
2. Upgrade the OpenStack Image service (glance).
3. Upgrade all OpenStack Compute (nova) services.
4. Upgrade all OpenStack Block Storage (cinder) services.

For each of these steps, complete the following sub-steps:

1. Stop services.
2. Create a backup of configuration files and databases.
3. Upgrade the packages using your distribution’s package manager.
4. Update the configuration files according to the release notes.
5. Apply the database upgrades.

126 | Chapter 11: Maintenance, Failures, and Debugging

6. Restart the services.
7. Verify that everything is running.

Probably the most important step of all is the pre-upgrade testing. Especially if you
are upgrading immediately after release of a new version, undiscovered bugs might
hinder your progress. Some deployers prefer to wait until the first point release is an‐
nounced. However, if you have a significant deployment, you might follow the devel‐
opment and testing of the release, thereby ensuring that bugs for your use cases are
fixed.

To complete an upgrade of OpenStack Compute while keeping instances running,
you should be able to use live migration to move machines around while performing
updates, and then move them back afterward as this is a property of the hypervisor.
However, it is critical to ensure that database changes are successful otherwise an in‐
consistent cluster state could arise.

Performing some ‘cleaning’ of the cluster prior to starting the upgrade is also a good
idea, to ensure the state is consistent. For example some have reported issues with in‐
stances that were not fully removed from the system after their deletion. Running a
command equivalent to:

$ virsh list --all

to find deleted instances that are still registered in the hypervisor and removing them
prior to running the upgrade can avoid issues.

Uninstalling
While we’d always recommend using your automated deployment system to re-install
systems from scratch, sometimes you do need to remove OpenStack from a system
the hard way. Here’s how:

• Remove all packages
• Remove remaining files
• Remove databases

These steps depend on your underlying distribution, but in general you should be
looking for ‘purge’ commands in your package manager, like aptitude purge ~c
$package. Following this, you can look for orphaned files in the directories refer‐
enced throughout this guide. For uninstalling the database properly, refer to the man‐
ual appropriate for the product in use.

Uninstalling | 127

CHAPTER 12

Network Troubleshooting

Network troubleshooting can unfortunately be a very difficult and confusing proce‐
dure. A network issue can cause a problem at several points in the cloud. Using a logi‐
cal troubleshooting procedure can help mitigate the confusion and more quickly iso‐
late where exactly the network issue is. This chapter aims to give you the information
you need to make yours.

Using “ip a” to Check Interface States
On compute nodes and nodes running nova-network, use the following command to
see information about interfaces, including information about IPs, VLANs, and
whether your interfaces are up.

ip a

If you’re encountering any sort of networking difficulty, one good initial sanity check
is to make sure that your interfaces are up. For example:

$ ip a | grep state
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
qlen 1000
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master
br100 state UP qlen 1000
4: virbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state
DOWN
6: br100: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP

You can safely ignore the state of virbr0, which is a default bridge created by libvirt
and not used by OpenStack.

129

Network Traffic in the Cloud
If you are logged in to an instance and ping an external host, for example google.com,
the ping packet takes the following route:

1. The instance generates a packet and places it on the virtual NIC inside the in‐
stance, such as, eth0.

2. The packet transfers to the virtual NIC of the compute host, such as, vnet1. You
can find out what vent NIC is being used by looking at the /etc/libvirt/qemu/
instance-xxxxxxxx.xml file.

3. From the vnet NIC, the packet transfers to a bridge on the compute node, such
as, br100.
If you run FlatDHCPManager, one bridge is on the compute node. If you run
VlanManager, one bridge exists for each VLAN.
To see which bridge the packet will use, run the command:

$ brctl show

Look for the vnet NIC. You can also reference nova.conf and look for the flat_in‐
terface_bridge option.

4. The packet transfers to the main NIC of the compute node. You can also see this
NIC in the brctl output, or you can find it by referencing the flat_interface option
in nova.conf.

5. After the packet is on this NIC, it transfers to the compute node’s default gateway.
The packet is now most likely out of your control at this point. The diagram de‐

130 | Chapter 12: Network Troubleshooting

picts an external gateway. However, in the default configuration with multi-host,
the compute host is the gateway.

Reverse the direction to see the path of a ping reply.

From this path, you can see that a single packet travels across four different NICs. If a
problem occurs with any of these NICs, a network issue occurs.

Finding a Failure in the Path
Use ping to quickly find where a failure exists in the network path. In an instance,
first see if you can ping an external host, such as google.com. If you can, then there
shouldn’t be a network problem at all.

If you can’t, try pinging the IP address of the compute node where the instance is
hosted. If you can ping this IP, then the problem is somewhere between the compute
node and that compute node’s gateway.

If you can’t ping the IP address of the compute node, the problem is between the in‐
stance and the compute node. This includes the bridge connecting the compute
node’s main NIC with the vnet NIC of the instance.

One last test is to launch a second instance and see if the two instances can ping each
other. If they can, the issue might be related to the firewall on the compute node.

tcpdump
One great, although very in-depth, way of troubleshooting network issues is to use
tcpdump. It’s recommended to use tcpdump at several points along the network path
to correlate where a problem might be. If you prefer working with a GUI, either live
or by using a tcpdump capture do also check out Wireshark (http://www.wire‐
shark.org/).

For example, run the following command:

tcpdump -i any -n -v 'icmp[icmptype] = icmp-echoreply or icmp[icmptype]

= icmp-echo'

Run this on the command line of the following areas:

1. An external server outside of the cloud.
2. A compute node.
3. An instance running on that compute node.

In this example, these locations have the following IP addresses:

Finding a Failure in the Path | 131

http://www.wireshark.org/

 Instance
 10.0.2.24
 203.0.113.30
 Compute Node
 10.0.0.42
 203.0.113.34
 External Server
 1.2.3.4

Next, open a new shell to the instance and then ping the external host where
tcpdump is running. If the network path to the external server and back is fully func‐
tional, you see something like the following:

On the external server:

12:51:42.020227 IP (tos 0x0, ttl 61, id 0, offset 0, flags [DF], proto ICMP
(1), length 84)
 203.0.113.30 > 1.2.3.4: ICMP echo request, id 24895, seq 1, length 64
12:51:42.020255 IP (tos 0x0, ttl 64, id 8137, offset 0, flags [none], proto
ICMP (1), length 84)
 1.2.3.4 > 203.0.113.30: ICMP echo reply, id 24895, seq 1, length 64

On the Compute Node:

12:51:42.019519 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto ICMP
(1), length 84)
 10.0.2.24 > 1.2.3.4: ICMP echo request, id 24895, seq 1, length 64
12:51:42.019519 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto ICMP
(1), length 84)
 10.0.2.24 > 1.2.3.4: ICMP echo request, id 24895, seq 1, length 64
12:51:42.019545 IP (tos 0x0, ttl 63, id 0, offset 0, flags [DF], proto ICMP
(1), length 84)
 203.0.113.30 > 1.2.3.4: ICMP echo request, id 24895, seq 1, length 64
12:51:42.019780 IP (tos 0x0, ttl 62, id 8137, offset 0, flags [none], proto
ICMP (1), length 84)
 1.2.3.4 > 203.0.113.30: ICMP echo reply, id 24895, seq 1, length 64
12:51:42.019801 IP (tos 0x0, ttl 61, id 8137, offset 0, flags [none], proto
ICMP (1), length 84)
 1.2.3.4 > 10.0.2.24: ICMP echo reply, id 24895, seq 1, length 64
12:51:42.019807 IP (tos 0x0, ttl 61, id 8137, offset 0, flags [none], proto
ICMP (1), length 84)
 1.2.3.4 > 10.0.2.24: ICMP echo reply, id 24895, seq 1, length 64

On the Instance:

12:51:42.020974 IP (tos 0x0, ttl 61, id 8137, offset 0, flags [none], proto
ICMP (1), length 84)
 1.2.3.4 > 10.0.2.24: ICMP echo reply, id 24895, seq 1, length 64

Here, the external server received the ping request and sent a ping reply. On the com‐
pute node, you can see that both the ping and ping reply successfully passed through.

132 | Chapter 12: Network Troubleshooting

You might also see duplicate packets on the compute node, as seen above, because
tcpdump captured the packet on both the bridge and outgoing interface.

iptables
Nova automatically manages iptables, including forwarding packets to and from in‐
stances on a compute node, forwarding floating IP traffic, and managing security
group rules.

Run the following command to view the current iptables configuration:

iptables-save

If you modify the configuration, it reverts the next time you restart
nova-network. You must use OpenStack to manage iptables.

Network Configuration in the Database
The nova database table contains a few tables with networking information:

• fixed_ips: contains each possible IP address for the subnet(s) added to Nova. This
table is related to the instances table by way of the fixed_ips.instance_uuid col‐
umn.

• floating_ips: contains each floating IP address that was added to nova. This table
is related to the fixed_ips table by way of the floating_ips.fixed_ip_id column.

• instances: not entirely network specific, but it contains information about the in‐
stance that is utilizing the fixed_ip and optional floating_ip.

From these tables, you can see that a Floating IP is technically never directly related
to an instance, it must always go through a Fixed IP.

Manually De-Associating a Floating IP
Sometimes an instance is terminated but the Floating IP was not correctly de-
associated from that instance. Because the database is in an inconsistent state, the
usual tools to de-associate the IP no longer work. To fix this, you must manually up‐
date the database.

First, find the UUID of the instance in question:

mysql> select uuid from instances where hostname = 'hostname';

Next, find the Fixed IP entry for that UUID:

mysql> select * from fixed_ips where instance_uuid = '<uuid>';

iptables | 133

You can now get the related Floating IP entry:

mysql> select * from floating_ips where fixed_ip_id = '<fixed_ip_id>';

And finally, you can de-associate the Floating IP:

mysql> update floating_ips set fixed_ip_id = NULL, host = NULL where
fixed_ip_id = '<fixed_ip_id>';

You can optionally also de-allocate the IP from the user’s pool:

mysql> update floating_ips set project_id = NULL where fixed_ip_id =
'<fixed_ip_id>';

Debugging DHCP Issues
One common networking problem is that an instance boots successfully but is not
reachable because it failed to obtain an IP address from dnsmasq, which is the DHCP
server that is launched by the nova-network service.

The simplest way to identify that this the problem with your instance is to look at the
console output of your instance. If DHCP failed, you can retrieve the console log by
doing:

$ nova console-log <instance name or uuid>

If your instance failed to obtain an IP through DHCP, some messages should appear
in the console. For example, for the Cirros image, you see output that looks like:

udhcpc (v1.17.2) started
Sending discover...
Sending discover...
Sending discover...
No lease, forking to background
starting DHCP forEthernet interface eth0 [[1;32mOK[0;39m]
cloud-setup: checking http://169.254.169.254/2009-04-04/meta-data/instance-id
wget: can't connect to remote host (169.254.169.254): Network is unreachable

After you establish that the instance booted properly, the task is to figure out where
the failure is.

A DHCP problem might be caused by a misbehaving dnsmasq process. First, debug
by checking logs and then restart the dnsmasq processes only for that project (ten‐
ant). In VLAN mode there is a dnsmasq process for each tenant. Once you have re‐
started targeted dnsmasq processes, the simplest way to rule out dnsmasq causes is to
kill all of the dnsmasq processes on the machine, and restart nova-network. As a last
resort, do this as root:

killall dnsmasq
restart nova-network

134 | Chapter 12: Network Troubleshooting

It’s openstack-nova-network on RHEL/CentOS/Fedora but nova-
network on Ubuntu/Debian.

Several minutes after nova-network is restarted, you should see new dnsmasq pro‐
cesses running:

ps aux | grep dnsmasq
nobody 3735 0.0 0.0 27540 1044 ? S 15:40 0:00 /usr/sbin/dnsmasq --strict-order
--bind-interfaces --conf-file=
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-br100.pid --
listen-address=192.168.100.1
 --except-interface=lo --dhcp-range=set:'novanetwork',192.168.100.2,static,
120s --dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf --dhcp-
script=/usr/bin/nova-dhcpbridge --leasefile-ro
root 3736 0.0 0.0 27512 444 ? S 15:40 0:00 /usr/sbin/dnsmasq --strict-order --
bind-interfaces --conf-file=
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-br100.pid --
listen-address=192.168.100.1
 --except-interface=lo --dhcp-range=set:'novanetwork',192.168.100.2,static,
120s --dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf --dhcp-
script=/usr/bin/nova-dhcpbridge --leasefile-ro

If your instances are still not able to obtain IP addresses, the next thing to check is if
dnsmasq is seeing the DHCP requests from the instance. On the machine that is run‐
ning the dnsmasq process, which is the compute host if running in multi-host mode,
look at /var/log/syslog to see the dnsmasq output. If dnsmasq is seeing the request
properly and handing out an IP, the output looks like:

Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPDISCOVER(br100) fa:16:3e:56:0b:
6f
Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPOFFER(br100) 192.168.100.3 fa:
16:3e:56:0b:6f
Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPREQUEST(br100) 192.168.100.3 fa:
16:3e:56:0b:6f
Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPACK(br100) 192.168.100.3 fa:
16:3e:56:0b:6f test

If you do not see the DHCPDISCOVER, a problem exists with the packet getting
from the instance to the machine running dnsmasq. If you see all of above output and
your instances are still not able to obtain IP addresses then the packet is able to get
from the instance to the host running dnsmasq, but it is not able to make the return
trip.

If you see any other message, such as:

Feb 27 22:01:36 mynode dnsmasq-dhcp[25435]: DHCPDISCOVER(br100) fa:16:3e:
78:44:84 no address available

Debugging DHCP Issues | 135

Then this may be a dnsmasq and/or nova-network related issue. (For the example
above, the problem happened to be that dnsmasq did not have any more IP addresses
to give away because there were no more Fixed IPs available in the OpenStack Com‐
pute database).

If there’s a suspicious-looking dnsmasq log message, take a look at the command-line
arguments to the dnsmasq processes to see if they look correct.

$ ps aux | grep dnsmasq

The output looks something like:

108 1695 0.0 0.0 25972 1000 ? S Feb26 0:00 /usr/sbin/dnsmasq -u libvirt-dnsmasq
--strict-order --bind-interfaces
 --pid-file=/var/run/libvirt/network/default.pid --conf-file= --except-
interface lo --listen-address 192.168.122.1
 --dhcp-range 192.168.122.2,192.168.122.254 --dhcp-leasefile=/var/lib/libvirt/
dnsmasq/default.leases
 --dhcp-lease-max=253 --dhcp-no-override
nobody 2438 0.0 0.0 27540 1096 ? S Feb26 0:00 /usr/sbin/dnsmasq --strict-order
--bind-interfaces --conf-file=
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-br100.pid --listen-
address=192.168.100.1
 --except-interface=lo --dhcp-range=set:'novanetwork',192.168.100.2,static,120s
--dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf --dhcp-script=/usr/bin/
nova-dhcpbridge --leasefile-ro
root 2439 0.0 0.0 27512 472 ? S Feb26 0:00 /usr/sbin/dnsmasq --strict-order --
bind-interfaces --conf-file=
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-br100.pid --listen-
address=192.168.100.1
 --except-interface=lo --dhcp-range=set:'novanetwork',192.168.100.2,static,120s
--dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf --dhcp-script=/usr/bin/
nova-dhcpbridge --leasefile-ro

If the problem does not seem to be related to dnsmasq itself, at this point, use
tcpdump on the interfaces to determine where the packets are getting lost.

DHCP traffic uses UDP. The client sends from port 68 to port 67 on the server. Try to
boot a new instance and then systematically listen on the NICs until you identify the
one that isn’t seeing the traffic. To use tcpdump to listen to ports 67 and 68 on br100,
you would do:

tcpdump -i br100 -n port 67 or port 68

You should be doing sanity checks on the interfaces using command such as "ip a"
and "brctl show" to ensure that the interfaces are actually up and configured the way
that you think that they are.

136 | Chapter 12: Network Troubleshooting

Debugging DNS Issues
If you are able to ssh into an instance, but it takes a very long time (on the order of a
minute) to get a prompt, then you might have a DNS issue. The reason a DNS issue
can cause this problem is that the ssh server does a reverse DNS lookup on the IP
address that you are connecting from. If DNS lookup isn’t working on your instances,
then you must wait for the DNS reverse lookup timeout to occur for the ssh login
process to complete.

When debugging DNS issues, start by making sure the host where the dnsmasq pro‐
cess for that instance runs is able to correctly resolve. If the host cannot resolve, then
the instances won’t be able either.

A quick way to check if DNS is working is to resolve a hostname inside your instance
using the host command. If DNS is working, you should see:

$ host openstack.org
openstack.org has address 174.143.194.225
openstack.org mail is handled by 10 mx1.emailsrvr.com.
openstack.org mail is handled by 20 mx2.emailsrvr.com.

If you’re running the Cirros image, it doesn’t have the “host” program installed, in
which case you can use ping to try to access a machine by hostname to see if it re‐
solves. If DNS is working, the first line of ping would be:

$ ping openstack.org
PING openstack.org (174.143.194.225): 56 data bytes

If the instance fails to resolve the hostname, you have a DNS problem. For example:

$ ping openstack.org
ping: bad address 'openstack.org'

In an OpenStack cloud, the dnsmasq process acts as the DNS server for the instances
in addition to acting as the DHCP server. A misbehaving dnsmasq process may be
the source of DNS-related issues inside the instance. As mentioned in the previous
section, the simplest way to rule out a misbehaving dnsmasq process is to kill all of
the dnsmasq processes on the machine, and restart nova-network. However, be aware
that this command affects everyone running instances on this node, including ten‐
ants that have not seen the issue. As a last resort, as root:

killall dnsmasq
restart nova-network

After the dnsmasq processes start again, check if DNS is working.

If restarting the dnsmasq process doesn’t fix the issue, you might need to use
tcpdump to look at the packets to trace where the failure is. The DNS server listens
on UDP port 53. You should see the DNS request on the bridge (such as, br100) of
your compute node. If you start listening with tcpdump on the compute node:

Debugging DNS Issues | 137

tcpdump -i br100 -n -v udp port 53
tcpdump: listening on br100, link-type EN10MB (Ethernet), capture size 65535
bytes

Then, if you ssh into your instance and try to ping openstack.org, you should see
something like:

16:36:18.807518 IP (tos 0x0, ttl 64, id 56057, offset 0, flags [DF], proto UDP
(17), length 59)
 192.168.100.4.54244 > 192.168.100.1.53: 2+ A? openstack.org. (31)
16:36:18.808285 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto UDP
(17), length 75)
 192.168.100.1.53 > 192.168.100.4.54244: 2 1/0/0 openstack.org. A
174.143.194.225 (47)

138 | Chapter 12: Network Troubleshooting

CHAPTER 13

Logging and Monitoring

As an OpenStack cloud is composed of so many different services, there are a large
number of log files. This section aims to assist you in locating and working with
them, and other ways to track the status of your deployment.

Where Are the Logs?
On Ubuntu, most services use the convention of writing their log files to subdirecto‐
ries of the /var/log directory.

Cloud Controller

Service Log Location

nova-* /var/log/nova

glance-* /var/log/glance

cinder-* /var/log/cinder

keystone /var/log/keystone

horizon /var/log/apache2/

misc (Swift, dnsmasq) /var/log/syslog

Compute Nodes
libvirt: /var/log/libvirt/libvirtd.log

139

Console (boot up messages) for VM instances: /var/lib/nova/instances/

instance-<instance id>/console.log

Block Storage Nodes
cinder: /var/log/cinder/cinder-volume.log

How to Read the Logs
OpenStack services use the standard logging levels, at increasing severity: DEBUG,
INFO, AUDIT, WARNING, ERROR, CRITICAL, and TRACE. That is, messages only
appear in the logs if they are more “severe” than the particular log level with DEBUG
allowing all log statements through. For example, TRACE is logged only if the soft‐
ware has a stack trace, while INFO is logged for every message including those that
are only for information.

To disable DEBUG-level logging, edit /etc/nova/nova.conf:

debug=false

Keystone is handled a little differently. To modify the logging level, edit the /etc/
keystone/logging.conf file and look at the logger_root and handler_file sec‐
tions.

Logging for Horizon is configured in /etc/openstack_dashboard/

local_settings.py. As Horizon is a Django web application, it follows the Django
Logging (https://docs.djangoproject.com/en/dev/topics/logging/) framework conven‐
tions.

The first step in finding the source of an error is typically to search for a CRITICAL,
TRACE, or ERROR message in the log starting at the bottom of the log file.

An example of a CRITICAL log message, with the corresponding TRACE (Python
traceback) immediately following:

2013-02-25 21:05:51 17409 CRITICAL cinder [-] Bad or unexpected response from
the storage volume backend API: volume group
 cinder-volumes doesn't exist
2013-02-25 21:05:51 17409 TRACE cinder Traceback (most recent call last):
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/bin/cinder-volume", line 48,
in <module>
2013-02-25 21:05:51 17409 TRACE cinder service.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
cinder/service.py", line 422, in wait
2013-02-25 21:05:51 17409 TRACE cinder _launcher.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
cinder/service.py", line 127, in wait
2013-02-25 21:05:51 17409 TRACE cinder service.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/

140 | Chapter 13: Logging and Monitoring

https://docs.djangoproject.com/en/dev/topics/logging/
https://docs.djangoproject.com/en/dev/topics/logging/

eventlet/greenthread.py", line 166, in wait
2013-02-25 21:05:51 17409 TRACE cinder return self._exit_event.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
eventlet/event.py", line 116, in wait
2013-02-25 21:05:51 17409 TRACE cinder return hubs.get_hub().switch()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
eventlet/hubs/hub.py", line 177, in switch
2013-02-25 21:05:51 17409 TRACE cinder return self.greenlet.switch()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
eventlet/greenthread.py", line 192, in main
2013-02-25 21:05:51 17409 TRACE cinder result = function(*args, **kwargs)
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
cinder/service.py", line 88, in run_server
2013-02-25 21:05:51 17409 TRACE cinder server.start()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
cinder/service.py", line 159, in start
2013-02-25 21:05:51 17409 TRACE cinder self.manager.init_host()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
cinder/volume/manager.py", line 95,
 in init_host
2013-02-25 21:05:51 17409 TRACE cinder self.driver.check_for_setup_error()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
cinder/volume/driver.py", line 116,
 in check_for_setup_error
2013-02-25 21:05:51 17409 TRACE cinder raise exception.VolumeBackendAPIExcep-
tion(data=exception_message)
2013-02-25 21:05:51 17409 TRACE cinder VolumeBackendAPIException: Bad or unex-
pected response from the storage volume
 backend API: volume group cinder-volumes doesn't exist
2013-02-25 21:05:51 17409 TRACE cinder

In this example, cinder-volumes failed to start and has provided a stack trace, since its
volume back-end has been unable to setup the storage volume - probably because the
LVM volume that is expected from the configuration does not exist.

An example error log:

2013-02-25 20:26:33 6619 ERROR nova.openstack.common.rpc.common [-] AMQP server
on localhost:5672 is unreachable:
 [Errno 111] ECONNREFUSED. Trying again in 23 seconds.

In this error, a nova service has failed to connect to the RabbitMQ server, because it
got a connection refused error.

Tracing Instance Requests
When an instance fails to behave properly, you will often have to trace activity associ‐
ated with that instance across the log files of various nova-* services, and across both
the cloud controller and compute nodes.

Tracing Instance Requests | 141

The typical way is to trace the UUID associated with an instance across the service
logs.

Consider the following example:

ubuntu@initial:~$ nova list
+--------------------------------+--------+--------+--------------------------+
| ID | Name | Status | Networks |
+--------------------------------+--------+--------+--------------------------+
| fafed8-4a46-413b-b113-f1959ffe | cirros | ACTIVE | novanetwork=192.168.100.3|
+--------------------------------------+--------+--------+--------------------+

Here the ID associated with the instance is faf7ded8-4a46-413b-b113-

f19590746ffe. If you search for this string on the cloud controller in the /var/log/
nova-*.log files, it appears in nova-api.log, and nova-scheduler.log. If you search
for this on the compute nodes in /var/log/nova-*.log, it appears nova-

network.log and nova-compute.log. If no ERROR or CRITICAL messages appear,
the most recent log entry that reports this may provide a hint about what has gone
wrong.

Adding Custom Logging Statements
If there is not enough information in the existing logs, you may need to add your own
custom logging statements to the nova-* services.

The source files are located in /usr/lib/python2.7/dist-packages/nova

To add logging statements, the following line should be near the top of the file. For
most files, these should already be there:

from nova.openstack.common import log as logging
LOG = logging.getLogger(__name__)

To add a DEBUG logging statement, you would do:

LOG.debug("This is a custom debugging statement")

You may notice that all of the existing logging messages are preceded by an under‐
score and surrounded by parentheses, for example:

LOG.debug(_("Logging statement appears here"))

This is used to support translation of logging messages into different languages using
the gettext (http://docs.python.org/2/library/gettext.html) internationalization li‐
brary. You don’t need to do this for your own custom log messages. However, if you
want to contribute the code back to the OpenStack project that includes logging state‐
ments, you must surround your log messages with underscore and parentheses.

142 | Chapter 13: Logging and Monitoring

http://docs.python.org/2/library/gettext.html

RabbitMQ Web Management Interface or rabbitmqctl
Aside from connection failures, RabbitMQ log files are generally not useful for de‐
bugging OpenStack related issues. Instead, we recommend you use the RabbitMQ
web management interface. Enable it on your cloud controller:

/usr/lib/rabbitmq/bin/rabbitmq-plugins enable rabbitmq_management
service rabbitmq-server restart

The RabbitMQ web management interface is accessible on your cloud controller at
http://localhost:55672.

Ubuntu 12.04 installs RabbitMQ version 2.7.1, which uses port
55672. RabbitMQ versions 3.0 and above use port 15672 instead.
You can check which version of RabbitMQ you have running on
your local Ubuntu machine by doing:

$ dpkg -s rabbitmq-server | grep "Version:"
Version: 2.7.1-0ubuntu4

An alternative to enabling the RabbitMQ Web Management Interface is to use the
rabbitmqctl commands. For example, rabbitmqctl list_queues| grep cinder displays any
messages left in the queue. If there are, it’s a possible sign that cinder services didn’t
connect properly to rabbitmq and might have to be restarted.

Items to monitor for RabbitMQ include the number of items in each of the queues
and the processing time statistics for the server.

Centrally Managing Logs
Because your cloud is most likely composed of many servers, you must check logs on
each of those servers to properly piece an event together. A better solution is to send
the logs of all servers to a central location so they can all be accessed from the same
area.

Ubuntu uses rsyslog as the default logging service. Since it is natively able to send logs
to a remote location, you don’t have to install anything extra to enable this feature,
just modify the configuration file. In doing this, consider running your logging over a
management network, or using an encrypted VPN to avoid interception.

rsyslog Client Configuration
To begin, configure all OpenStack components to log to syslog in addition to their
standard log file location. Also configure each component to log to a different syslog
facility. This makes it easier to split the logs into individual components on the cen‐
tral server.

RabbitMQ Web Management Interface or rabbitmqctl | 143

nova.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL0

glance-api.conf and glance-registry.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL1

cinder.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL2

keystone.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL3

Swift

By default, Swift logs to syslog.

Next, create /etc/rsyslog.d/client.conf with the following line:

. @192.168.1.10

This instructs rsyslog to send all logs to the IP listed. In this example, the IP points to
the Cloud Controller.

rsyslog Server Configuration
Designate a server as the central logging server. The best practice is to choose a server
that is solely dedicated to this purpose. Create a file called /etc/rsyslog.d/server.conf
with the following contents:

Enable UDP
$ModLoad imudp
Listen on 192.168.1.10 only
$UDPServerAddress 192.168.1.10
Port 514
$UDPServerRun 514

Create logging templates for nova
$template NovaFile,"/var/log/rsyslog/%HOSTNAME%/nova.log"
$template NovaAll,"/var/log/rsyslog/nova.log"

Log everything else to syslog.log
$template DynFile,"/var/log/rsyslog/%HOSTNAME%/syslog.log"
. ?DynFile

144 | Chapter 13: Logging and Monitoring

Log various openstack components to their own individual file
local0.* ?NovaFile
local0.* ?NovaAll
& ~

The above example configuration handles the nova service only. It first configures
rsyslog to act as a server that runs on port 514. Next, it creates a series of logging tem‐
plates. Logging templates control where received logs are stored. Using the example
above, a nova log from c01.example.com goes to the following locations:

• /var/log/rsyslog/c01.example.com/nova.log

• /var/log/rsyslog/nova.log

This is useful as logs from c02.example.com go to:

• /var/log/rsyslog/c02.example.com/nova.log

• /var/log/rsyslog/nova.log

So you have an individual log file for each compute node as well as an aggregated log
that contains nova logs from all nodes.

StackTach
StackTach is a tool created by Rackspace to collect and report the notifications sent by
nova. Notifications are essentially the same as logs, but can be much more detailed. A
good overview of notifications can be found at System Usage Data (https://wiki.open‐
stack.org/wiki/SystemUsageData).

To enable nova to send notifications, add the following to nova.conf:

notification_topics=monitor
notification_driver=nova.openstack.common.notifier.rabbit_notifier

Once nova is sending notifications, install and configure StackTach. Since StackTach
is relatively new and constantly changing, installation instructions would quickly be‐
come outdated. Please refer to the StackTach GitHub repo (https://github.com/rack‐
erlabs/stacktach) for instructions as well as a demo video.

Monitoring
There are two types of monitoring: watching for problems and watching usage
trends. The former ensures that all services are up and running, creating a functional
cloud. The latter involves monitoring resource usage over time in order to make in‐
formed decisions about potential bottlenecks and upgrades.

StackTach | 145

https://wiki.openstack.org/wiki/SystemUsageData
https://github.com/rackerlabs/stacktach

Process Monitoring
A basic type of alert monitoring is to simply check and see if a required process is
running. For example, ensure that the nova-api service is running on the Cloud Con‐
troller:

[root@cloud ~] # ps aux | grep nova-api
nova 12786 0.0 0.0 37952 1312 ? Ss Feb11 0:00 su -s /bin/sh -c exec nova-api --
config-file=/etc/nova/nova.conf nova
nova 12787 0.0 0.1 135764 57400 ? S Feb11 0:01 /usr/bin/python /usr/bin/nova-
api --config-file=/etc/nova/nova.conf
nova 12792 0.0 0.0 96052 22856 ? S Feb11 0:01 /usr/bin/python /usr/bin/nova-api
--config-file=/etc/nova/nova.conf
nova 12793 0.0 0.3 290688 115516 ? S Feb11 1:23 /usr/bin/python /usr/bin/nova-
api --config-file=/etc/nova/nova.conf
nova 12794 0.0 0.2 248636 77068 ? S Feb11 0:04 /usr/bin/python /usr/bin/nova-
api --config-file=/etc/nova/nova.conf
root 24121 0.0 0.0 11688 912 pts/5 S+ 13:07 0:00 grep nova-api

You can create automated alerts for critical processes by using Nagios and NRPE. For
example, to ensure that the nova-compute process is running on compute nodes, cre‐
ate an alert on your Nagios server that looks like this:

define service {
 host_name c01.example.com
 check_command check_nrpe_1arg!check_nova-compute
 use generic-service
 notification_period 24x7
 contact_groups sysadmins
 service_description nova-compute
}

Then on the actual compute node, create the following NRPE configuration:

command[check_nova-compute]=/usr/lib/nagios/plugins/check_procs -c 1: -a nova-
compute

Nagios checks that at least one nova-compute service is running at all times.

Resource Alerting
Resource alerting provides notifications when one or more resources are critically
low. While the monitoring thresholds should be tuned to your specific OpenStack en‐
vironment, monitoring resource usage is not specific to OpenStack at all – any gener‐
ic type of alert will work fine.

Some of the resources that you want to monitor include:

• Disk Usage
• Server Load

146 | Chapter 13: Logging and Monitoring

• Memory Usage
• Network IO
• Available vCPUs

For example, to monitor disk capacity on a compute node with Nagios, add the fol‐
lowing to your Nagios configuration:

define service {
 host_name c01.example.com
 check_command check_nrpe!check_all_disks!20% 10%
 use generic-service
 contact_groups sysadmins
 service_description Disk
}

On the compute node, add the following to your NRPE configuration:

command[check_all_disks]=/usr/lib/nagios/plugins/check_disk -w $ARG1$ -c $ARG2$
-e

Nagios alerts you with a WARNING when any disk on the compute node is 80% full
and CRITICAL when 90% is full.

OpenStack-specific Resources
Resources such as memory, disk, and CPU are generic resources that all servers (even
non-OpenStack servers) have and are important to the overall health of the server.
When dealing with OpenStack specifically, these resources are important for a second
reason: ensuring enough are available in order to launch instances. There are a few
ways you can see OpenStack resource usage.

The first is through the nova command:

nova usage-list

This command displays a list of how many instances a tenant has running and some
light usage statistics about the combined instances. This command is useful for a
quick overview of your cloud, but doesn’t really get into a lot of details.

Next, the nova database contains three tables that store usage information.

The nova.quotas and nova.quota_usages tables store quota information. If a ten‐
ant’s quota is different than the default quota settings, their quota is stored in no
va.quotas table. For example:

Monitoring | 147

mysql> select project_id, resource, hard_limit from quotas;
+----------------------------------+-----------------------------+------------+
| project_id | resource | hard_limit |
+----------------------------------+-----------------------------+------------+
628df59f091142399e0689a2696f5baa	metadata_items	128
628df59f091142399e0689a2696f5baa	injected_file_content_bytes	10240
628df59f091142399e0689a2696f5baa	injected_files	5
628df59f091142399e0689a2696f5baa	gigabytes	1000
628df59f091142399e0689a2696f5baa	ram	51200
628df59f091142399e0689a2696f5baa	floating_ips	10
628df59f091142399e0689a2696f5baa	instances	10
628df59f091142399e0689a2696f5baa	volumes	10
628df59f091142399e0689a2696f5baa	cores	20
+----------------------------------+-----------------------------+------------+

The nova.quota_usages table keeps track of how many resources the tenant current‐
ly has in use:

mysql> select project_id, resource, in_use from quota_usages where project_id
like '628%';
+----------------------------------+--------------+--------+
| project_id | resource | in_use |
+----------------------------------+--------------+--------+
628df59f091142399e0689a2696f5baa	instances	1
628df59f091142399e0689a2696f5baa	ram	512
628df59f091142399e0689a2696f5baa	cores	1
628df59f091142399e0689a2696f5baa	floating_ips	1
628df59f091142399e0689a2696f5baa	volumes	2
628df59f091142399e0689a2696f5baa	gigabytes	12
628df59f091142399e0689a2696f5baa	images	1
+----------------------------------+--------------+--------+

By combining the resources used with the tenant’s quota, you can figure out a usage
percentage. For example, if this tenant is using 1 Floating IP out of 10, then they are
using 10% of their Floating IP quota. You can take this procedure and turn it into a
formatted report:

+----------------------------------+------------+-------------+---------------+
| some_tenant |
+-----------------------------------+------------+------------+---------------+
| Resource | Used | Limit | |
+-----------------------------------+------------+------------+---------------+
cores	1	20	5 %
floating_ips	1	10	10 %
gigabytes	12	1000	1 %
images	1	4	25 %
injected_file_content_bytes	0	10240	0 %
injected_file_path_bytes	0	255	0 %
injected_files	0	5	0 %
instances	1	10	10 %
key_pairs	0	100	0 %
metadata_items	0	128	0 %
ram	512	51200	1 %

148 | Chapter 13: Logging and Monitoring

reservation_expire	0	86400	0 %
security_group_rules	0	20	0 %
security_groups	0	10	0 %
volumes	2	10	20 %
+-----------------------------------+------------+------------+---------------+

The above was generated using a custom script which can be found on GitHub
(https://github.com/cybera/novac/blob/dev/libexec/novac-quota-report).

This script is specific to a certain OpenStack installation and must be
modified to fit your environment. However, the logic should easily
be transferable.

Intelligent Alerting
Intelligent alerting can be thought of as a form of continuous integration for opera‐
tions. For example, you can easily check to see if Glance is up and running by ensur‐
ing that the glance-api and glance-registry processes are running or by seeing if
glace-api is responding on port 9292.

But how can you tell if images are being successfully uploaded to the Image Service?
Maybe the disk that Image Service is storing the images on is full or the S3 back-end
is down. You could naturally check this by doing a quick image upload:

#!/bin/bash

assumes that reasonable credentials have been stored at
/root/auth

. /root/openrc
wget https://launchpad.net/cirros/trunk/0.3.0/+download/cirros-0.3.0-x86_64-
disk.img
glance image-create --name='cirros image' --is-public=true --container-
format=bare --disk-format=qcow2 < cirros-0.3.0-x8
6_64-disk.img

By taking this script and rolling it into an alert for your monitoring system (such as
Nagios), you now have an automated way of ensuring image uploads to the Image
Catalog are working.

You must remove the image after each test. Even better, test whether
you can successfully delete an image from the Image Service.

Intelligent alerting takes a considerable more amount of time to plan and implement
than the other alerts described in this chapter. A good outline to implement intelli‐
gent alerting is:

Monitoring | 149

• Review common actions in your cloud
• Create ways to automatically test these actions
• Roll these tests into an alerting system

Some other examples for Intelligent Alerting include:

• Can instances launch and destroyed?
• Can users be created?
• Can objects be stored and deleted?
• Can volumes be created and destroyed?

Trending
Trending can give you great insight into how your cloud is performing day to day. For
example, if a busy day was simply a rare occurrence or if you should start adding new
compute nodes.

Trending takes a slightly different approach than alerting. While alerting is interested
in a binary result (whether a check succeeds or fails), trending records the current
state of something at a certain point in time. Once enough points in time have been
recorded, you can see how the value has changed over time.

All of the alert types mentioned earlier can also be used for trend reporting. Some
other trend examples include:

• The number of instances on each compute node
• The types of flavors in use
• The number of volumes in use
• The number of Object Storage requests each hour
• The number of nova-api requests each hour
• The I/O statistics of your storage services

As an example, recording nova-api usage can allow you to track the need to scale
your cloud controller. By keeping an eye on nova-api requests, you can determine if
you need to spawn more nova-api processes or go as far as introducing an entirely
new server to run nova-api. To get an approximate count of the requests, look for
standard INFO messages in /var/log/nova/nova-api.log:

grep INFO /var/log/nova/nova-api.log | wc

You can obtain further statistics by looking for the number of successful requests:

150 | Chapter 13: Logging and Monitoring

grep " 200 " /var/log/nova/nova-api.log | wc

By running this command periodically and keeping a record of the result, you can
create a trending report over time that shows whether your nova-api usage is in‐
creasing, decreasing, or keeping steady.

A tool such as collectd can be used to store this information. While collectd is out of
the scope of this book, a good starting point would be to use collectd to store the re‐
sult as a COUNTER data type. More information can be found in collectd’s docu‐
mentation (https://collectd.org/wiki/index.php/Data_source)

Monitoring | 151

CHAPTER 14

Backup and Recovery

Standard backup best practices apply when creating your OpenStack backup policy.
For example, how often to backup your data is closely related to how quickly you
need to recover from data loss.

If you cannot have any data loss at all, you should focus on High
Availability as well as backups.

Other backup considerations include:

• How many backups to keep?
• Should backups be kept off-site?
• How often should backups be tested?

Just as important as a backup policy is a recovery policy (or at least recovery testing).

What to Backup
While OpenStack is composed of many components and moving parts, backing up
the critical data is quite simple.

This chapter describes only how to back up configuration files and databases that the
various OpenStack components need to run. This chapter does not describe how to
back up objects inside Object Storage or data contained inside Block Storage. Gener‐
ally these areas are left for the user to back up on their own.

153

Database Backups
The example OpenStack architecture designates the Cloud Controller as the MySQL
server. This MySQL server hosts the databases for Nova, Glance, Cinder, and Key‐
stone. With all of these databases in one place, it’s very easy to create a database back‐
up:

mysqldump --opt --all-databases >
 openstack.sql

If you only want to backup a single database, you can instead run:

mysqldump --opt nova > nova.sql

where nova is the database you want to back up.

You can easily automate this process by creating a cron job that runs the following
script once per day:

#!/bin/bash
backup_dir="/var/lib/backups/mysql"
filename="${backup_dir}/mysql-`hostname`-`eval date +%Y%m%d`.sql.gz"
Dump the entire MySQL database
/usr/bin/mysqldump --opt --all-databases | gzip > $filename
Delete backups older than 7 days
find $backup_dir -ctime +7 -type f -delete

This script dumps the entire MySQL database and delete any backups older than 7
days.

File System Backups
This section discusses which files and directories should be backed up regularly, or‐
ganized by service.

Compute
The /etc/nova directory on both the cloud controller and compute nodes should be
regularly backed up.

/var/log/nova does not need backed up if you have all logs going to a central area. It
is highly recommended to use a central logging server or backup the log directory.

/var/lib/nova is another important directory to backup. The exception to this is
the /var/lib/nova/instances subdirectory on compute nodes. This subdirectory
contains the KVM images of running instances. You would only want to back up this
directory if you need to maintain backup copies of all instances. Under most circum‐
stances, you do not need to do this, but this can vary from cloud to cloud and your

154 | Chapter 14: Backup and Recovery

service levels. Also be aware that making a backup of a live KVM instance can cause
that instance to not boot properly if it is ever restored from a backup.

Image Catalog and Delivery
/etc/glance and /var/log/glance follow the same rules at the nova counterparts.

/var/lib/glance should also be backed up. Take special notice of /var/lib/glance/
images. If you are using a file-based back-end of Glance, /var/lib/glance/images is
where the images are stored and care should be taken.

There are two ways to ensure stability with this directory. The first is to make sure
this directory is run on a RAID array. If a disk fails, the directory is available. The
second way is to use a tool such as rsync to replicate the images to another server:

rsync -az --progress /var/lib/glance/images backup-server:/var/lib/glance/images/

Identity
/etc/keystone and /var/log/keystone follow the same rules as other components.

/var/lib/keystone, while should not contain any data being used, can also be
backed up just in case.

Block Storage
/etc/cinder and /var/log/cinder follow the same rules as other components.

/var/lib/cinder should also be backed up.

Object Storage
/etc/swift is very important to have backed up. This directory contains the Swift
configuration files as well as the ring files and ring builder files, which if lost render
the data on your cluster inaccessible. A best practice is to copy the builder files to all
storage nodes along with the ring files. Multiple backups copies are spread through‐
out your storage cluster.

Recovering Backups
Recovering backups is a fairly simple process. To begin, first ensure that the service
you are recovering is not running. For example, to do a full recovery of nova on the
cloud controller, first stop all nova services:

stop nova-api
 # stop nova-cert
 # stop nova-consoleauth

Recovering Backups | 155

 # stop nova-novncproxy
 # stop nova-objectstore
 # stop nova-scheduler

Once that’s done, stop MySQL:

stop mysql

Now you can import a previously backed up database:

mysql nova < nova.sql

As well as restore backed up nova directories:

mv /etc/nova{,.orig}
 # cp -a /path/to/backup/nova /etc/

Once the files are restored, start everything back up:

start mysql
 # for i in nova-api nova-cert nova-consoleauth nova-novncproxy nova-
objectstore nova-scheduler
 > do
 > start $i
 > done

Other services follow the same process, with their respective directories and databa‐
ses.

156 | Chapter 14: Backup and Recovery

CHAPTER 15

Customize

OpenStack might not do everything you need it to do out of the box. In these cases,
you can follow one of two major paths. First, you can learn How To Contribute
(https://wiki.openstack.org/wiki/How_To_Contribute), follow the Code Review
Workflow (https://wiki.openstack.org/wiki/GerritWorkflow), make your changes and
contribute them back to the upstream OpenStack project. This path is recommended
if the feature you need requires deep integration with an existing project. The com‐
munity is always open to contributions and welcomes new functionality that follows
the feature development guidelines.

Alternately, if the feature you need does not require deep integration, there are other
ways to customize OpenStack. If the project where your feature would need to reside
uses the Python Paste framework, you can create middleware for it and plug it in
through configuration. There may also be specific ways of customizing an project
such as creating a new scheduler for OpenStack Compute or a customized Dash‐
board. This chapter focuses on the second method of customizing OpenStack.

To customize OpenStack this way you’ll need a development environment. The best
way to get an environment up and running quickly is to run DevStack within your
cloud.

DevStack
You can find all of the documentation at the DevStack (http://devstack.org/) website.
Depending on which project you would like to customize, either Object Storage
(swift) or another project, you must configure DevStack differently. For the middle‐
ware example below, you must install with the Object Store enabled.

To run DevStack for the stable Folsom branch on an instance:

157

https://wiki.openstack.org/wiki/How_To_Contribute
https://wiki.openstack.org/wiki/GerritWorkflow
https://wiki.openstack.org/wiki/GerritWorkflow
http://devstack.org/

1. Boot an instance from the Dashboard or the nova command-line interface (CLI)
with the following parameters.

• Name: devstack
• Image: Ubuntu 12.04 LTS
• Memory Size: 4 GB RAM (you could probably get away with 2 GB)
• Disk Size: minimum 5 GB

If you are using the nova client, specify --flavor 6 on the nova boot command
to get adequate memory and disk sizes.

2. If your images have only a root user, you must create a “stack” user. Otherwise
you run into permission issues with screen if you let stack.sh create the “stack”
user for you. If your images already have a user other than root, you can skip this
step.
a. ssh root@<IP Address>

b. adduser --gecos "" stack

c. Enter a new password at the prompt.
d. adduser stack sudo

e. grep -q "^#includedir.*/etc/sudoers.d" /etc/sudoers || echo "#in

cludedir /etc/sudoers.d" >> /etc/sudoers

f. (umask 226 && echo "stack ALL=(ALL) NOPASSWD:ALL" > /etc/sudo

ers.d/50_stack_sh)

g. exit

3. Now login as the stack user and set up DevStack.
a. ssh stack@<IP address>

b. At the prompt, enter the password that you created for the stack user.
c. sudo apt-get -y update

d. sudo apt-get -y install git

e. git clone https://github.com/openstack-dev/devstack.git -b sta

ble/folsom devstack/

f. cd devstack

g. vim localrc

a. For Swift only, used in the Middleware Example, see the example [1] Swift
only localrc below

158 | Chapter 15: Customize

b. For all other projects, used in the Nova Scheduler Example, see the exam‐
ple [2] All other projects localrc below

h. ./stack.sh

i. screen -r stack

• The stack.sh script takes a while to run. Perhaps take this
opportunity to join the OpenStack foundation (http://
www.openstack.org/join/).

• When you run stack.sh, you might see an error message that
reads “ERROR: at least one RPC back-end must be enabled”.
Don’t worry about it; swift and keystone do not need an RPC
(AMQP) back-end. You can also ignore any ImportErrors.

• Screen is a useful program for viewing many related services
at once. For more information, see GNU screen quick refer‐
ence. (http://aperiodic.net/screen/quick_reference)

Now that you have an OpenStack development environment, you’re free to hack
around without worrying about damaging your production deployment. Proceed to
either the Middleware Example for a Swift-only environment, or the Nova Schedu‐
ler Example for all other projects.

[1] Swift only localrc
ADMIN_PASSWORD=devstack
MYSQL_PASSWORD=devstack
RABBIT_PASSWORD=devstack
SERVICE_PASSWORD=devstack
SERVICE_TOKEN=devstack

SWIFT_HASH=66a3d6b56c1f479c8b4e70ab5c2000f5
SWIFT_REPLICAS=1

Uncomment the BRANCHes below to use stable versions

unified auth system (manages accounts/tokens)
KEYSTONE_BRANCH=stable/folsom
object storage
SWIFT_BRANCH=stable/folsom

disable_all_services
enable_service key swift mysql

DevStack | 159

http://www.openstack.org/join/
http://aperiodic.net/screen/quick_reference
http://aperiodic.net/screen/quick_reference

[2] All other projects localrc
ADMIN_PASSWORD=devstack
MYSQL_PASSWORD=devstack
RABBIT_PASSWORD=devstack
SERVICE_PASSWORD=devstack
SERVICE_TOKEN=devstack

FLAT_INTERFACE=br100
PUBLIC_INTERFACE=eth0

VOLUME_BACKING_FILE_SIZE=20480M

For stable versions, look for branches named stable/[milestone].

compute service
NOVA_BRANCH=stable/folsom

volume service
CINDER_BRANCH=stable/folsom

image catalog service
GLANCE_BRANCH=stable/folsom

unified auth system (manages accounts/tokens)
KEYSTONE_BRANCH=stable/folsom

django powered web control panel for openstack
HORIZON_BRANCH=stable/folsom

Middleware Example
Most OpenStack projects are based on the Python Paste(http://pythonpaste.org/)
framework. The best introduction to its architecture is A Do-It-Yourself Framework
(http://pythonpaste.org/do-it-yourself-framework.html). Due to the use of this
framework, you are able to add features to a project by placing some custom code in a
project’s pipeline without having to change any of the core code.

To demonstrate customizing OpenStack like this, we’ll create a piece of middleware
for swift that allows access to a container from only a set of IP addresses, as deter‐
mined by the container’s metadata items. Such an example could be useful in many
contexts. For example, you might have public access to one of your containers, but
what you really want to restrict it to is a set of IPs based on a whitelist.

This example is for illustrative purposes only. It should not be used
as a container IP whitelist solution without further development and
extensive security testing.

160 | Chapter 15: Customize

http://pythonpaste.org/
http://pythonpaste.org/do-it-yourself-framework.html

When you join the screen session that stack.sh starts with screen -r stack, you’re
greeted with three screens if you used the localrc file with just Swift installed.

0$ shell* 1$ key 2$ swift

The asterisk * indicates which screen you are on.

• 0$ shell . A shell where you can get some work done.
• 1$ key . The keystone service.
• 2$ swift . The swift proxy service.

To create the middleware and plug it in through Paste configuration:

1. All of the code for OpenStack lives in /opt/stack. Go to the swift directory in
the shell screen and edit your middleware module.
a. cd /opt/stack/swift

b. vim swift/common/middleware/ip_whitelist.py

2. Copy in the following code. When you’re done, save and close the file.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#

http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
See the License for the specific language governing permissions and
limitations under the License.
import socket

from swift.common.utils import get_logger
from swift.proxy.controllers.base import get_container_info
from swift.common.swob import Request, Response

class IPWhitelistMiddleware(object):
 """
 IP Whitelist Middleware

 Middleware that allows access to a container from only a set of IP
 addresses as determined by the container's metadata items that start
 with the prefix 'allow'. E.G. allow-dev=192.168.0.20
 """

 def __init__(self, app, conf, logger=None):
 self.app = app

Middleware Example | 161

 if logger:
 self.logger = logger
 else:
 self.logger = get_logger(conf, log_route='ip_whitelist')

 self.deny_message = conf.get('deny_message', "IP Denied")
 self.local_ip = socket.gethostbyname(socket.gethostname())

 def __call__(self, env, start_response):
 """
 WSGI entry point.
 Wraps env in swob.Request object and passes it down.

 :param env: WSGI environment dictionary
 :param start_response: WSGI callable
 """
 req = Request(env)

 try:
 version, account, container, obj = req.split_path(1, 4, True)
 except ValueError:
 return self.app(env, start_response)

 container_info = get_container_info(
 req.environ, self.app, swift_source='IPWhitelistMiddleware')

 remote_ip = env['REMOTE_ADDR']
 self.logger.debug(_("Remote IP: %(remote_ip)s"),
 {'remote_ip': remote_ip})

 meta = container_info['meta']
 allow = {k:v for k,v in meta.iteritems() if k.startswith('allow')}
 allow_ips = set(allow.values())
 allow_ips.add(self.local_ip)
 self.logger.debug(_("Allow IPs: %(allow_ips)s"),
 {'allow_ips': allow_ips})

 if remote_ip in allow_ips:
 return self.app(env, start_response)
 else:
 self.logger.debug(
 _("IP %(remote_ip)s denied access to Account=%(account)s "
 "Container=%(container)s. Not in %(allow_ips)s"), lo
cals())
 return Response(
 status=403,
 body=self.deny_message,
 request=req)(env, start_response)

def filter_factory(global_conf, **local_conf):

162 | Chapter 15: Customize

 """
 paste.deploy app factory for creating WSGI proxy apps.
 """
 conf = global_conf.copy()
 conf.update(local_conf)

 def ip_whitelist(app):
 return IPWhitelistMiddleware(app, conf)
 return ip_whitelist

There is a lot of useful information in env and conf that you can use to decide
what to do with the request. To find out more about what properties are avail‐
able, you can insert the following log statement into the __init__ method

self.logger.debug(_("conf = %(conf)s"), locals())

and the following log statement into the __call__ method
self.logger.debug(_("env = %(env)s"), locals())

3. To plug this middleware into the Swift pipeline you’ll need to edit one configura‐
tion file.

 vim /etc/swift/proxy-server.conf

4. Find the [filter:ratelimit] section and copy in the following configuration
section.

[filter:ip_whitelist]
paste.filter_factory = swift.common.middleware.ip_whitelist:filter_factory
You can override the default log routing for this filter here:
set log_name = ratelimit
set log_facility = LOG_LOCAL0
set log_level = INFO
set log_headers = False
set log_address = /dev/log
deny_message = You shall not pass!

5. Find the [pipeline:main] section and add ip_whitelist to the list like so.
When you’re done, save and close the file.

[pipeline:main]
pipeline = catch_errors healthcheck cache ratelimit ip_whitelist authtoken
keystoneauth proxy-logging proxy-server

6. Restart the Swift Proxy service to make Swift use your middleware. Start by
switching to the swift screen.
a. Press Ctrl-A followed by pressing 2, where 2 is the label of the screen. You can

also press Ctrl-A followed by pressing n to go to the next screen.
b. Press Ctrl-C to kill the service.
c. Press Up Arrow to bring up the last command.

Middleware Example | 163

d. Press Enter to run it.
7. Test your middleware with the Swift CLI. Start by switching to the shell screen

and finish by switching back to the swift screen to check the log output.
a. Press Ctrl-A followed by pressing 0
b. cd ~/devstack

c. source openrc

d. swift post middleware-test

e. Press Ctrl-A followed by pressing 2
8. Among the log statements you’ll see the lines.

proxy-server ... IPWhitelistMiddleware
proxy-server Remote IP: 203.0.113.68 (txn: ...)
proxy-server Allow IPs: set(['203.0.113.68']) (txn: ...)

The first three statements basically have to do with the fact that middleware
doesn’t need to re-authenticate when it interacts with other Swift services. The
last 2 statements are produced by our middleware and show that the request was
sent from our DevStack instance and was allowed.

9. Test the middleware from outside of DevStack on a remote machine that has ac‐
cess to your DevStack instance.
a. swift --os-auth-url=http://203.0.113.68:5000/v2.0/ --os-region-

name=RegionOne --os-username=demo:demo --os-password=devstack

list middleware-test

b. Container GET failed: http://203.0.113.68:8080/v1/AUTH_.../middleware-
test?format=json 403 Forbidden You shall not pass!

10. Check the Swift log statements again and among the log statements you’ll see the
lines.

proxy-server Invalid user token - deferring reject downstream
proxy-server Authorizing from an overriding middleware (i.e: tempurl)
(txn: ...)
proxy-server ... IPWhitelistMiddleware
proxy-server Remote IP: 198.51.100.12 (txn: ...)
proxy-server Allow IPs: set(['203.0.113.68']) (txn: ...)
proxy-server IP 198.51.100.12 denied access to Account=AUTH_... Contain-
er=None. Not in set(['203.0.113.68']) (txn: ...)

Here we can see that the request was denied because the remote IP address wasn’t
in the set of allowed IPs.

11. Back on your DevStack instance add some metadata to your container to allow
the request from the remote machine.
a. Press Ctrl-A followed by pressing 0

164 | Chapter 15: Customize

b. swift post --meta allow-dev:198.51.100.12 middleware-test

12. Now try the command from ??? again and it succeeds.

Functional testing like this is not a replacement for proper unit and integration test‐
ing but it serves to get you started.

A similar pattern can be followed in all other projects that use the Python Paste
framework. Simply create a middleware module and plug it in through configuration.
The middleware runs in sequence as part of that project’s pipeline and can call out to
other services as necessary. No project core code is touched. Look for a pipeline val‐
ue in the project’s conf or ini configuration files in /etc/<project> to identify
projects that use Paste.

When your middleware is done, we encourage you to open source it and let the com‐
munity know on the OpenStack mailing list. Perhaps others need the same function‐
ality. They can use your code, provide feedback, and possibly contribute. If enough
support exists for it, perhaps you can propose that it be added to the official Swift
middleware (https://github.com/openstack/swift/tree/master/swift/common/middle‐
ware).

Nova Scheduler Example
Many OpenStack projects allow for customization of specific features using a driver
architecture. You can write a driver that conforms to a particular interface and plug it
in through configuration. For example, you can easily plug in a new scheduler for no‐
va. The existing schedulers for nova are feature full and well documented at Schedul‐
ing (http://docs.openstack.org/trunk/config-reference/content/section_compute-
scheduler.html). However, depending on your user’s use cases, the existing schedulers
might not meet your requirements. You might need to create a new scheduler.

To create a scheduler you must inherit from the class nova.scheduler.driver.Sched
uler. Of the five methods that you can override, you must override the two methods
indicated with a “*” below.

• update_service_capabilities

• hosts_up

• schedule_live_migration

• * schedule_prep_resize
• * schedule_run_instance

To demonstrate customizing OpenStack, we’ll create an example of a nova scheduler
that randomly places an instance on a subset of hosts depending on the originating IP

Nova Scheduler Example | 165

https://github.com/openstack/swift/tree/master/swift/common/middleware
http://docs.openstack.org/trunk/config-reference/content/section_compute-scheduler.html
http://docs.openstack.org/trunk/config-reference/content/section_compute-scheduler.html

address of the request and the prefix of the hostname. Such an example could be use‐
ful when you have a group of users on a subnet and you want all of their instances to
start within some subset of your hosts.

This example is for illustrative purposes only. It should not be used
as a scheduler for Nova without further development and testing.

When you join the screen session that stack.sh starts with screen -r stack, you
are greeted with many screens.

0$ shell* 1$ key 2$ g-reg 3$ g-api 4$ n-api 5$ n-cpu 6$ n-crt 7$ n-net
 8-$ n-sch ...

• shell . A shell where you can get some work done.
• key . The keystone service.
• g-* . The glance services.
• n-* . The nova services.
• n-sch . The nova scheduler service.

To create the scheduler and plug it in through configuration:

1. The code for OpenStack lives in /opt/stack so go to the nova directory and edit
your scheduler module.
a. cd /opt/stack/nova

b. vim nova/scheduler/ip_scheduler.py

2. Copy in the following code. When you’re done, save and close the file.
vim: tabstop=4 shiftwidth=4 softtabstop=4
Copyright (c) 2013 OpenStack Foundation
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the
License for the specific language governing permissions and limitations
under the License.

166 | Chapter 15: Customize

"""
IP Scheduler implementation
"""

import random

from nova import exception
from nova.openstack.common import log as logging
from nova import flags
from nova.scheduler import driver

FLAGS = flags.FLAGS
LOG = logging.getLogger(__name__)

class IPScheduler(driver.Scheduler):
 """
 Implements Scheduler as a random node selector based on
 IP address and hostname prefix.
 """

 def _filter_hosts(self, hosts, hostname_prefix):
 """Filter a list of hosts based on hostname prefix."""

 hosts = [host for host in hosts if host.startswith(hostname_prefix)]
 return hosts

 def _schedule(self, context, topic, request_spec, filter_properties):
 """
 Picks a host that is up at random based on
 IP address and hostname prefix.
 """

 elevated = context.elevated()
 hosts = self.hosts_up(elevated, topic)

 if not hosts:
 msg = _("Is the appropriate service running?")
 raise exception.NoValidHost(reason=msg)

 remote_ip = context.remote_address

 if remote_ip.startswith('10.1'):
 hostname_prefix = 'doc'
 elif remote_ip.startswith('10.2'):
 hostname_prefix = 'ops'
 else:
 hostname_prefix = 'dev'

 hosts = self._filter_hosts(hosts, hostname_prefix)
 host = hosts[int(random.random() * len(hosts))]

Nova Scheduler Example | 167

 LOG.debug(_("Request from %(remote_ip)s scheduled to %(host)s")
 % locals())

 return host

 def schedule_run_instance(self, context, request_spec,
 admin_password, injected_files,
 requested_networks, is_first_time,
 filter_properties):
 """Attempts to run the instance"""
 instance_uuids = request_spec.get('instance_uuids')
 for num, instance_uuid in enumerate(instance_uuids):
 request_spec['instance_properties']['launch_index'] = num
 try:
 host = self._schedule(context, 'compute', request_spec,
 filter_properties)
 updated_instance = driver.instance_update_db(context,
 instance_uuid)
 self.compute_rpcapi.run_instance(context,
 instance=updated_instance,
host=host,
 requested_net
works=requested_networks,
 injected_files=injec
ted_files,
 admin_password=admin_pass
word,

is_first_time=is_first_time,
 request_spec=request_spec,
 filter_proper
ties=filter_properties)
 except Exception as ex:
 # NOTE(vish): we don't reraise the exception here to make
sure
 # that all instances in the request get set to
 # error properly
 driver.handle_schedule_error(context, ex, instance_uuid,
 request_spec)

 def schedule_prep_resize(self, context, image, request_spec,
 filter_properties, instance, instance_type,
 reservations):
 """Select a target for resize."""
 host = self._schedule(context, 'compute', request_spec,
 filter_properties)
 self.compute_rpcapi.prep_resize(context, image, instance,
 instance_type, host, reservations)

There is a lot of useful information in context, request_spec, and filter_prop
erties that you can use to decide where to schedule the instance. To find out

168 | Chapter 15: Customize

more about what properties are available you can insert the following log state‐
ments into the schedule_run_instance method of the scheduler above.

LOG.debug(_("context = %(context)s") % {'context': context.__dict__})LOG.de-
bug(_("request_spec = %(request_spec)s") % locals())LOG.debug(_("fil-
ter_properties = %(filter_properties)s") % locals())

3. To plug this scheduler into Nova you’ll need to edit one configuration file.
LOG$ vim /etc/nova/nova.conf

4. Find the compute_scheduler_driver config and change it like so.
LOGcompute_scheduler_driver=nova.scheduler.ip_scheduler.IPScheduler

5. Restart the Nova scheduler service to make Nova use your scheduler. Start by
switching to the n-sch screen.
a. Press Ctrl-A followed by pressing 8
b. Press Ctrl-C to kill the service
c. Press Up Arrow to bring up the last command
d. Press Enter to run it

6. Test your scheduler with the Nova CLI. Start by switching to the shell screen and
finish by switching back to the n-sch screen to check the log output.
a. Press Ctrl-A followed by pressing 0
b. cd ~/devstack

c. source openrc

d. IMAGE_ID=`nova image-list | egrep cirros | egrep -v "kernel|ram

disk" | awk '{print $2}'`

e. nova boot --flavor 1 --image $IMAGE_ID scheduler-test

f. Press Ctrl-A followed by pressing 8
7. Among the log statements you’ll see the line.

LOG2013-02-27 17:39:31 DEBUG nova.scheduler.ip_scheduler [req-... demo
demo] Request from 50.56.172.78 scheduled to
devstack-nova from (pid=4118) _schedule /opt/stack/nova/nova/scheduler/
ip_scheduler.py:73

Functional testing like this is not a replacement for proper unit and integration test‐
ing but it serves to get you started.

A similar pattern can be followed in all other projects that use the driver architecture.
Simply create a module and class that conform to the driver interface and plug it in
through configuration. Your code runs when that feature is used and can call out to
other services as necessary. No project core code is touched. Look for a “driver” value

Nova Scheduler Example | 169

in the project’s conf configuration files in /etc/<project> to identify projects that
use a driver architecture.

When your scheduler is done, we encourage you to open source it and let the com‐
munity know on the OpenStack mailing list. Perhaps others need the same function‐
ality. They can use your code, provide feedback, and possibly contribute. If enough
support exists for it, perhaps you can propose that it be added to the official Nova
schedulers (https://github.com/openstack/nova/tree/master/nova/scheduler).

Dashboard
The Dashboard is based on the Python Django (https://www.djangoproject.com/)
web application framework. The best guide to customizing it has already been written
and can be found at Build on Horizon (http://docs.openstack.org/developer/horizon/
topics/tutorial.html).

170 | Chapter 15: Customize

https://github.com/openstack/nova/tree/master/nova/scheduler
https://www.djangoproject.com/
http://docs.openstack.org/developer/horizon/topics/tutorial.html

CHAPTER 16

Upstream OpenStack

OpenStack is founded on a thriving community which is a source of help, and wel‐
comes your contributions. This section details some of the ways you can interact with
the others involved.

Getting Help
There are several avenues available for seeking assistance. The quickest way to is to
help the community help you. Search the Q&A sites, mailing list archives, and bug
lists for issues similar to yours. If you can’t find anything, follow the directions for
Reporting Bugs in the section below or use one of the channels for support below.

Your first port of call should be the official OpenStack documentation, found on
http://docs.openstack.org.

You can get questions answered on the ask.openstack.org site.

Mailing Lists (https://wiki.openstack.org/wiki/Mailing_Lists) are also a great place to
get help. The wiki page has more information about the various lists. As an operator,
the main lists you should be aware of are:

• General list: openstack@lists.openstack.org. The scope of this list is the cur‐
rent state of OpenStack. This is a very high traffic mailing list, with many, many
emails per day.

• Operators list: openstack-operators@lists.openstack.org. This list is intend‐
ed for discussion among existing OpenStack cloud operators, such as yourself.
Currently, this list is relatively low traffic, on the order of one email a day.

171

https://wiki.openstack.org/wiki/Mailing_Lists
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-operators

• Development list: openstack-dev@lists.openstack.org. The scope of this list is
the future state of OpenStack. This is a high traffic mailing list, with multiple
emails per day.

We recommend you subscribe to the general list and the operator list, although you
must set up filters to manage the volume for the general list. You’ll also find links to
the mailing list archives on the mailing list wiki page where you can search through
the discussions.

Multiple IRC channels (https://wiki.openstack.org/wiki/IRC) are available for general
questions and developer discussions. The general discussion channel is #openstack
on irc.freenode.net.

Reporting Bugs
As an operator, you are in a very good position to report unexpected behavior with
your cloud. As OpenStack is flexible, you may be the only individual to report a par‐
ticular issue. Every issue is important to fix so it is essential to learn how to easily sub‐
mit a bug report.

All OpenStack projects use Launchpad for bug tracking. You’ll need to create an ac‐
count on Launchpad before you can submit a bug report.

Once you have a Launchpad account, reporting a bug is as simple as identifying the
project, or projects that are causing the issue. Sometimes this is more difficult than
expected, but those working on the bug triage are happy to help relocate issues if their
not in the right place initially.

• Report a bug in Nova (https://bugs.launchpad.net/nova/+filebug)
• Report a bug in python-novaclient (https://bugs.launchpad.net/python-

novaclient/+filebug)
• Report a bug in Swift (https://bugs.launchpad.net/swift/+filebug)
• Report a bug in python-swiftclient (https://bugs.launchpad.net/python-

swiftclient/+filebug)
• Report a bug in Glance (https://bugs.launchpad.net/glance/+filebug)
• Report a bug in python-glanceclient (https://bugs.launchpad.net/python-

glanceclient/+filebug)
• Report a bug in Keystone (https://bugs.launchpad.net/keystone/+filebug)
• Report a bug in python-keystoneclient (https://bugs.launchpad.net/python-

keystoneclient/+filebug)
• Report a bug in Quantum (https://bugs.launchpad.net/quantum/+filebug)

172 | Chapter 16: Upstream OpenStack

http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev
https://wiki.openstack.org/wiki/IRC
http://launchpad.net/
https://bugs.launchpad.net/nova/+filebug
https://bugs.launchpad.net/python-novaclient/+filebug
https://bugs.launchpad.net/swift/+filebug
https://bugs.launchpad.net/python-swiftclient/+filebug
https://bugs.launchpad.net/glance/+filebug
https://bugs.launchpad.net/python-glanceclient/+filebug
https://bugs.launchpad.net/keystone/+filebug
https://bugs.launchpad.net/python-keystoneclient/+filebug
https://bugs.launchpad.net/quantum/+filebug

• Report a bug in python-quantumclient (https://bugs.launchpad.net/python-
quantumclient/+filebug)

• Report a bug in Cinder (https://bugs.launchpad.net/cinder/+filebug)
• Report a bug in python-cinderclient (https://bugs.launchpad.net/python-

cinderclient/+filebug)
• Report a bug in Horizon (https://bugs.launchpad.net/horizon/+filebug)
• Report a bug with the documentation (http://bugs.launchpad.net/openstack-

manuals/+filebug)
• Report a bug with the API documentation (http://bugs.launchpad.net/openstack-

api-site/+filebug)

To write a good bug report, the following process is essential. First, search for the bug
to make sure there is no bug already filed for the same issue. If you find one, be sure
to click on “This bug affects X people. Does this bug affect you?” If you can’t find the
issue then enter the details of your report. It should at least include:

• The release, or milestone, or commit ID corresponding to the software that you
are running.

• The operating system and version where you’ve identified the bug.
• Steps to reproduce the bug, including what went wrong.
• Description of the expected results instead of what you saw.
• Read and understood your log files so you only include relevant excerpts.

When you do this, the bug is created with:

• Status: New

In the bug comments, you can contribute instructions on how to fix a given bug, and
set it to Triaged. Or you can directly fix it: assign the bug to yourself, set it to In pro‐
gress, branch the code, implement the fix, and propose your change for merging into
trunk. But let’s not get ahead of ourselves, there are bug triaging tasks as well.

Confirming & Prioritizing
This stage is about checking that a bug is real and assessing its impact. Some of these
steps require bug supervisor rights (usually limited to core teams). If the bug lacks
information to properly reproduce or assess the importance of the bug, the bug is set
to:

• Status: Incomplete

Reporting Bugs | 173

https://bugs.launchpad.net/python-quantumclient/+filebug
https://bugs.launchpad.net/cinder/+filebug
https://bugs.launchpad.net/python-cinderclient/+filebug
https://bugs.launchpad.net/horizon/+filebug
http://bugs.launchpad.net/openstack-manuals/+filebug
http://bugs.launchpad.net/openstack-api-site/+filebug

Once you have reproduced the issue (or are 100% confident that this is indeed a valid
bug) and have permissions to do so, set:

• Status: Confirmed

Core developers also prioritize the bug, based on its impact:

• Importance: <Bug impact>

The bug impacts are categorized as follows:

1. Critical if the bug prevents a key feature from working properly (regression) for
all users (or without a simple workaround) or result in data loss

2. High if the bug prevents a key feature from working properly for some users (or
with a workaround)

3. Medium if the bug prevents a secondary feature from working properly
4. Low if the bug is mostly cosmetic
5. Wishlist if the bug is not really a bug, but rather a welcome change in behavior

If the bug contains the solution, or a patch, set the bug status to Triaged

Bug Fixing
At this stage, a developer works on a fix. During that time, to avoid duplicating the
work, they should set:

• Status: In progress
• Assignee: <yourself>

When the fix is ready, they propose and get the change reviewed.

After the Change is Accepted
After the change is reviewed, accepted, and lands in master, it automatically moves to:

• Status: Fix committed

When the fix makes it into a milestone or release branch, it automatically moves to:

• Milestone: Milestone the bug was fixed in
• Status: Fix released

174 | Chapter 16: Upstream OpenStack

Join the OpenStack Community
Since you’ve made it this far in the book, you should consider becoming an official
individual member of the community and Join The OpenStack Foundation (https://
www.openstack.org/join/). The OpenStack Foundation is an independent body pro‐
viding shared resources to help achieve the OpenStack mission by protecting, em‐
powering, and promoting OpenStack software and the community around it, includ‐
ing users, developers and the entire ecosystem. We all share the responsibility to
make this community the best it can possibly be and signing up to be a member is the
first step to participating. Like the software, individual membership within the Open‐
Stack Foundation is free and accessible to anyone.

Features and the Development Roadmap
OpenStack follows a six month release cycle, typically releasing in April and October
each year. At the start of each cycle, the community gathers in a single location for a
Design Summit. At the summit, the features for the coming releases are discussed,
prioritized and planned. Here’s an example release cycle with dates showing mile‐
stone releases, code freeze, and string freeze dates along with an example of when the
Summit occurs. Milestones are interim releases within the cycle that are available as
packages for download and testing. Code freeze is putting a stop to adding new fea‐
tures to the release. String freeze is putting a stop to changing any strings within the
source code.

Feature requests typically start their life in Etherpad, a collaborative editing tool,
which is used to take coordinating notes at a design summit session specific to the
feature. This then leads to the creation of a blueprint on the Launchpad site for the
particular project, which is used to describe the feature more formally. Blueprints are
then approved by project team members, and development can begin.

Therefore, the fastest way to get your feature request up for consideration is to create
an Etherpad with your ideas and propose a session to the design summit. If the de‐
sign summit has already passed, you may also create a blueprint directly. Read this
blog post about how to work with blueprints (http://vmartinezdelacruz.com/how-to-

Join the OpenStack Community | 175

https://www.openstack.org/join/
http://vmartinezdelacruz.com/how-to-work-with-blueprints-without-losing-your-mind/

work-with-blueprints-without-losing-your-mind/) for a developer intern’s perspec‐
tive, Victoria Martínez.

The roadmap for the next release as it is developed can be seen at Releases (http://
status.openstack.org/release/).

To determine the potential features going in to future releases, or to look at features
implemented previously, take a look at the existing blueprints such as OpenStack
Compute (nova) Blueprints (https://blueprints.launchpad.net/nova), OpenStack
Identity (keystone) Blueprints (https://blueprints.launchpad.net/keystone) and re‐
lease notes.

Release notes are maintained on the OpenStack wiki:

Series Status Releases Date

Grizzly Under development, Release schedule Due Apr 4, 2013

Folsom Current stable release, security-supported 2012.2 Sep 27, 2012

2012.2.1 Nov 29, 2012

2012.2.2 Dec 13, 2012

2012.2.3 Jan 31, 2012

Essex Community-supported, security-supported 2012.1 Apr 5, 2012

2012.1.1 Jun 22, 2012

2012.1.2 Aug 10, 2012

2012.1.3 Oct 12, 2012

Diablo Community-supported 2011.3 Sep 22, 2011

2011.3.1 Jan 19, 2012

Cactus Deprecated 2011.2 Apr 15, 2011

Bexar Deprecated 2011.1 Feb 3, 2011

Austin Deprecated 2010.1 Oct 21, 2010

176 | Chapter 16: Upstream OpenStack

http://status.openstack.org/release/
https://blueprints.launchpad.net/nova
https://blueprints.launchpad.net/nova
https://blueprints.launchpad.net/keystone
https://blueprints.launchpad.net/keystone
https://wiki.openstack.org/wiki/GrizzlyReleaseSchedule
https://wiki.openstack.org/wiki/ReleaseNotes/Folsom
https://wiki.openstack.org/wiki/ReleaseNotes/2012.2.1
https://wiki.openstack.org/wiki/ReleaseNotes/2012.2.2
https://wiki.openstack.org/wiki/ReleaseNotes/2012.2.3
https://wiki.openstack.org/wiki/ReleaseNotes/Essex
https://wiki.openstack.org/wiki/ReleaseNotes/2012.1.1
https://wiki.openstack.org/wiki/ReleaseNotes/2012.1.2
https://wiki.openstack.org/wiki/ReleaseNotes/2012.1.3
https://wiki.openstack.org/wiki/ReleaseNotes/Diablo
https://wiki.openstack.org/wiki/ReleaseNotes/2011.3.1
https://wiki.openstack.org/wiki/ReleaseNotes/Cactus
https://wiki.openstack.org/wiki/ReleaseNotes/Bexar
https://wiki.openstack.org/wiki/ReleaseNotes/Austin

How to Contribute to the Documentation
OpenStack documentation efforts encompass operator and administrator docs, API
docs, and user docs.

The genesis of this book was an in-person event, but now that the book is in your
hands we want you to contribute to it. OpenStack documentation follows the coding
principles of iterative work, with bug logging, investigating, and fixing.

Just like the code, the docs.openstack.org site is updated constantly using the Gerrit
review system, with source stored in GitHub in the openstack-manuals (http://
github.com/openstack/openstack-manuals/) repository and the api-site (http://
github.com/openstack/api-site/) repository, in DocBook format.

To review the documentation before it’s published, go to the OpenStack Gerrit server
at review.openstack.org and search for project:openstack/openstack-manuals or
project:openstack/api-site.

See the How To Contribute (https://wiki.openstack.org/wiki/How_To_Contribute)
page on the wiki for more information on the steps you need to take to submit your
first documentation review or change.

Security Information
As a community, we take security very seriously and follow a specific process for re‐
porting potential issues. We vigilantly pursue fixes and regularly eliminate exposures.
You can report security issues you discover through this specific process. The Open‐
Stack Vulnerability Management Team is a very small group of experts in vulnerabili‐
ty management drawn from the OpenStack community. Their job is facilitating the
reporting of vulnerabilities, coordinating security fixes and handling progressive dis‐
closure of the vulnerability information. Specifically, the Team is responsible for the
following functions:

• Vulnerability Management: All vulnerabilities discovered by community mem‐
bers (or users) can be reported to the Team.

• Vulnerability Tracking: The Team will curate a set of vulnerability related issues
in the issue tracker. Some of these issues are private to the Team and the affected
product leads, but once remediation is in place, all vulnerabilities are public.

• Responsible Disclosure: As part of our commitment to work with the security
community, the team ensures that proper credit is given to security researchers
who responsibly report issues in OpenStack.

We provide two ways to report issues to the OpenStack Vulnerability Management
Team depending on how sensitive the issue is:

How to Contribute to the Documentation | 177

http://docs.openstack.org
http://github.com/openstack/openstack-manuals/
http://github.com/openstack/api-site/
http://review.openstack.org
https://review.openstack.org/#/q/status:open+project:openstack/openstack-manuals,n,z
https://review.openstack.org/#/q/status:open+project:openstack/api-site,n,z
https://wiki.openstack.org/wiki/How_To_Contribute

• Open a bug in Launchpad and mark it as a ’security bug’. This makes the bug pri‐
vate and accessible to only the Vulnerability Management Team.

• If the issue is extremely sensitive, send an encrypted email to one of the Team’s
members. Find their GPG keys at OpenStack Security (http://www.open‐
stack.org/projects/openstack-security/).

You can find the full list of security-oriented teams you can join at Security
Teams (http://wiki.openstack.org/SecurityTeams). The Vulnerability Management
process is fully documented at Vulnerability Management (https://wiki.open‐
stack.org/wiki/VulnerabilityManagement).

Finding Additional Information
In addition to this book, there are many other sources of information about Open‐
Stack. The OpenStack website (http://www.openstack.org) is a good starting point,
with OpenStack Docs (http://docs.openstack.org) and OpenStack API Docs (http://
api.openstack.org) providing technical documentation about OpenStack. The Open‐
Stack wiki contains a lot of general information that cuts across the OpenStack
projects including a list of recommended tools (https://wiki.openstack.org/wiki/
OperationsTools). Finally, there are a number of blogs aggregated at Planet Open‐
Stack (http://planet.openstack.org).

178 | Chapter 16: Upstream OpenStack

http://www.openstack.org/projects/openstack-security/
https://wiki.openstack.org/wiki/SecurityTeams
https://wiki.openstack.org/wiki/SecurityTeams
https://wiki.openstack.org/wiki/VulnerabilityManagement
http://www.openstack.org
http://docs.openstack.org
http://api.openstack.org
https://wiki.openstack.org
https://wiki.openstack.org
https://wiki.openstack.org/wiki/OperationsTools
http://planet.openstack.org
http://planet.openstack.org

CHAPTER 17

Advanced Configuration

OpenStack is intended to work well across a variety of installation flavors, from very
small private clouds to large public clouds. In order to achieve this the developers add
configuration options to their code which allow the behaviour of the various compo‐
nents to be tweaked depending on your needs. Unfortunately it is not possible to cov‐
er all possible deployments with the default configuration values.

At the time of writing, OpenStack has over 1,500 configuration options. You can see
them documented at the OpenStack configuration reference guide. This chapter can‐
not hope to document all of these, but however we do try to introduce the important
concepts so that you know where to go digging for more information.

Differences between various drivers
Many OpenStack projects implement a driver layer, and each of these drivers will im‐
plement their own configuration options. For example in OpenStack Compute (No‐
va), there are various hypervisor drivers implemented -- libvirt, xenserver, hyper-v
and vmware for example. Not all of these hypervisor drivers have the same features,
and each has different tuning requirements.

The currently implemented hypervisors are listed on the OpenStack
documentation website. You can see a matrix of the various features
in OpenStack Compute (Nova) hypervisor drivers on the OpenStack
wiki at the Hypervisor support matrix page.

The point we are trying to make here is that just because an option exists doesn’t
mean that option is relevant to your driver choices. Normally the documentation
notes which drivers the configuration applies to.

179

http://docs.openstack.org/trunk/config-reference/content/config_overview.html
http://docs.openstack.org/trunk/config-reference/content/section_compute-hypervisors.html
http://docs.openstack.org/trunk/config-reference/content/section_compute-hypervisors.html
https://wiki.openstack.org/wiki/HypervisorSupportMatrix

Periodic tasks
Another common concept across various OpenStack projects is that of periodic tasks.
Periodic tasks are much like cron jobs on traditional Unix systems, but they are run
inside of an OpenStack process. For example, when OpenStack Compute (Nova)
needs to work out what images it can remove from its local cache, it runs a periodic
task to do this.

Periodic tasks are important to understand because of limitations in the threading
model that OpenStack uses. OpenStack uses cooperative threading in python, which
means that if something long and complicated is running, it will block other tasks in‐
side that process from running unless it voluntarily yields execution to another coop‐
erative thread.

A tangible example of this is the nova-compute process. In order to manage the im‐
age cache with libvirt, nova-compute has a periodic process which scans the contents
of the image cache. Part of this scan is calculating a checksum for each of the images
and making sure that checksum matches what nova-compute expects it to be. How‐
ever, images can be very large and these checksums can take a long time to generate.
At one point, before it was reported as a bug and fixed, nova-compute would block
on this task and stop responding to RPC requests. This was visible to users as failure
of operations such as spawning or deleting instances.

The take away from this is if you observe an OpenStack process which appears to
“stop” for a while and then continue to process normally, you should check that peri‐
odic tasks aren’t the problem. One way to do this is to disable the periodic tasks by
setting their interval to zero. Additionally, you can configure how often these periodic
tasks run -- in some cases it might make sense to run them at a different frequency
from the default.

The frequency is defined separately for each periodic task. Therefore, to disable every
periodic task in OpenStack Compute (Nova), you would need to set a number of con‐
figuration options to zero. The current list of configuration options you would need
to set to zero are:

• bandwidth_poll_interval
• sync_power_state_interval
• heal_instance_info_cache_interval
• host_state_interval
• image_cache_manager_interval
• reclaim_instance_interval
• volume_usage_poll_interval

180 | Chapter 17: Advanced Configuration

• shelved_poll_interval
• shelved_offload_time
• instance_delete_interval

To set a configuration option to zero, include a line such as image_cache_manager_in
terval=0 to your nova.conf file.

This list will change between releases, so please refer to your configuration guide for
up to date information.

Specific configuration topics
This section covers specific examples of configuration options you might consider
tuning. It is by no means an exhaustive list.

OpenStack Compute (Nova)
Periodic task frequency
Before the Grizzly release, the frequency of periodic tasks was specified in seconds
between runs. This meant that if the periodic task took 30 minutes to run and the
frequency was set to hourly, then the periodic task actually ran every 90 minutes, be‐
cause the task would wait an hour after running before running again. This changed
in Grizzly, and we now time the frequency of periodic tasks from the start of the work
the task does. So, our 30 minute periodic task will run every hour, with a 30 minute
wait between the end of the first run and the start of the next.

Specific configuration topics | 181

APPENDIX A

Use Cases

This section contains a small selection of use cases from the community with more
technical detail than usual. Further examples can be found on the OpenStack Website
(https://www.openstack.org/user-stories/)

NeCTAR
Who uses it: Researchers from the Australian publicly funded research sector. Use is
across a wide variety of disciplines, with the purpose of instances being from running
simple web servers to using hundreds of cores for high throughput computing.

Deployment
Using OpenStack Compute Cells, the NeCTAR Cloud spans eight sites with approxi‐
mately 4,000 cores per site.

Each site runs a different configuration, as resource cells in an OpenStack Compute
cells setup. Some sites span multiple data centers, some use off compute node storage
with a shared file system and some use on compute node storage with a non-shared
file system. Each site deploys the Image Service with an Object Storage back-end. A
central Identity Service, Dashboard and Compute API Service is used. Login to the
Dashboard triggers a SAML login with Shibboleth, that creates an account in the
Identity Service with an SQL back-end.

Compute nodes have 24 to 48 cores, with at least 4 GB of RAM per core and approxi‐
mately 40 GB of ephemeral storage per core.

All sites are based on Ubuntu 12.04 with KVM as the hypervisor. The OpenStack ver‐
sion in use is typically the current stable version, with 5 to 10% back ported code
from trunk and modifications.

183

https://www.openstack.org/user-stories/

Resources
• OpenStack.org Case Study (https://www.openstack.org/user-stories/nectar/)
• NeCTAR-RC GitHub (https://github.com/NeCTAR-RC/)
• NeCTAR Website (https://www.nectar.org.au/)

MIT CSAIL
Who uses it: Researchers from the MIT Computer Science and Artificial Intelligence
Lab.

Deployment
The CSAIL cloud is currently 64 physical nodes with a total of 768 physical cores and
3,456 GB of RAM. Persistent data storage is largely outside of the cloud on NFS with
cloud resources focused on compute resources. There are 65 users in 23 projects with
typical capacity utilization nearing 90% we are looking to expand.

The software stack is Ubuntu 12.04 LTS with OpenStack Folsom from the Ubuntu
Cloud Archive. KVM is the hypervisor, deployed using FAI (http://fai-project.org/)
and Puppet for configuration management. The FAI and Puppet combination is used
lab wide, not only for OpenStack. There is a single cloud controller node, with the
remainder of the server hardware dedicated to compute nodes. Due to the compute
intensive nature of the use case, the ratio of physical CPU and RAM to virtual is 1:1 in
nova.conf. Although hyper-threading is enabled so, given the way Linux counts
CPUs, this is actually 2:1 in practice.

On the network side, physical systems have two network interfaces and a separate
management card for IPMI management. The OpenStack network service uses multi-
host networking and the FlatDHCP.

DAIR
Who uses it: DAIR is an integrated virtual environment that leverages the CANARIE
network to develop and test new information communication technology (ICT) and
other digital technologies. It combines such digital infrastructure as advanced net‐
working, and cloud computing and storage to create an environment for develop and
test of innovative ICT applications, protocols and services, perform at-scale experi‐
mentation for deployment, and facilitate a faster time to market.

184 | Appendix A: Use Cases

https://www.openstack.org/user-stories/nectar/
https://github.com/NeCTAR-RC/
https://www.nectar.org.au/
http://fai-project.org

Deployment
DAIR is hosted at two different data centres across Canada: one in Alberta and the
other in Quebec. It consists of a cloud controller at each location, however, one is des‐
ignated as the “master” controller that is in charge of central authentication and quo‐
tas. This is done through custom scripts and light modifications to OpenStack. DAIR
is currently running Folsom.

For Object Storage, each region has a Swift environment.

A NetApp appliance is used in each region for both block storage and instance stor‐
age. There are future plans to move the instances off of the NetApp appliance and
onto a distributed file system such as Ceph or GlusterFS.

VlanManager is used extensively for network management. All servers have two bon‐
ded 10gb NICs that are connected to two redundant switches. DAIR is set up to use
single-node networking where the cloud controller is the gateway for all instances on
all compute nodes. Internal OpenStack traffic (for example, storage traffic) does not
go through the cloud controller.

Resources
• DAIR Homepage (http://www.canarie.ca/en/dair-program/about)

CERN
Who uses it: Researchers at CERN (European Organization for Nuclear Research)
conducting high-energy physics research.

Deployment
The environment is largely based on Scientific Linux 6, which is Red Hat compatible.
We use KVM as our primary hypervisor although tests are ongoing with Hyper-V on
Windows Server 2008.

We use the Puppet Labs OpenStack modules to configure Compute, Image Service,
Identity Service and Dashboard. Puppet is used widely for instance configuration and
Foreman as a GUI for reporting and instance provisioning.

Users and Groups are managed through Active Directory and imported into the
Identity Service using LDAP. CLIs are available for Nova and Euca2ools to do this.

There are 3 clouds currently running at CERN, totaling around 3400 Nova Compute
nodes, with approximately 60,000 cores. The CERN IT cloud aims to expand to
300,000 cores by 2015.

Use Cases | 185

http://www.canarie.ca/en/dair-program/about

Resources
• OpenStack in Production: A tale of 3 OpenStack Clouds (openstack-in-

production.blogspot.com/2013/09/a-tale-of-3-openstack-clouds-50000.html)
• Review of CERN Data Centre Infrastructure (http://cern.ch/go/N8wp)
• CERN Cloud Infrastructure User Guide (http://information-

technology.web.cern.ch/book/cern-private-cloud-user-guide)

186 | Appendix A: Use Cases

http://openstack-in-production.blogspot.com/2013/09/a-tale-of-3-openstack-clouds-50000.html
http://cern.ch/go/N8wp
http://information-technology.web.cern.ch/book/cern-private-cloud-user-guide

APPENDIX B

Tales From the Cryp^H^H^H^H Cloud

Herein lies a selection of tales from OpenStack cloud operators. Read, and learn from
their wisdom.

Double VLAN
I was on-site in Kelowna, British Columbia, Canada setting up a new OpenStack
cloud. The deployment was fully automated: Cobbler deployed the OS on the bare
metal, bootstrapped it, and Puppet took over from there. I had run the deployment
scenario so many times in practice and took for granted that everything was working.

On my last day in Kelowna, I was in a conference call from my hotel. In the back‐
ground, I was fooling around on the new cloud. I launched an instance and logged in.
Everything looked fine. Out of boredom, I ran ps aux and all of the sudden the in‐
stance locked up.

Thinking it was just a one-off issue, I terminated the instance and launched a new
one. By then, the conference call ended and I was off to the data center.

At the data center, I was finishing up some tasks and remembered the lock-up. I log‐
ged into the new instance and ran ps aux again. It worked. Phew. I decided to run it
one more time. It locked up. WTF.

After reproducing the problem several times, I came to the unfortunate conclusion
that this cloud did indeed have a problem. Even worse, my time was up in Kelowna
and I had to return back to Calgary.

Where do you even begin troubleshooting something like this? An instance just ran‐
domly locks when a command is issued. Is it the image? Nope — it happens on all
images. Is it the compute node? Nope — all nodes. Is the instance locked up? No!
New SSH connections work just fine!

187

We reached out for help. A networking engineer suggested it was an MTU issue.
Great! MTU! Something to go on! What’s MTU and why would it cause a problem?

MTU is maximum transmission unit. It specifies the maximum number of bytes that
the interface accepts for each packet. If two interfaces have two different MTUs, bytes
might get chopped off and weird things happen -- such as random session lockups.

Not all packets have a size of 1500. Running the ls command over
SSH might only create a single packets less than 1500 bytes. Howev‐
er, running a command with heavy output, such as ps aux requires
several packets of 1500 bytes.

OK, so where is the MTU issue coming from? Why haven’t we seen this in any other
deployment? What’s new in this situation? Well, new data center, new uplink, new
switches, new model of switches, new servers, first time using this model of servers…
so, basically everything was new. Wonderful. We toyed around with raising the MTU
at various areas: the switches, the NICs on the compute nodes, the virtual NICs in the
instances, we even had the data center raise the MTU for our uplink interface. Some
changes worked, some didn’t. This line of troubleshooting didn’t feel right, though.
We shouldn’t have to be changing the MTU in these areas.

As a last resort, our network admin (Alvaro) and myself sat down with four terminal
windows, a pencil, and a piece of paper. In one window, we ran ping. In the second
window, we ran tcpdump on the cloud controller. In the third, tcpdump on the com‐
pute node. And the forth had tcpdump on the instance. For background, this cloud
was a multi-node, non-multi-host setup.

One cloud controller acted as a gateway to all compute nodes. VlanManager was used
for the network config. This means that the cloud controller and all compute nodes
had a different VLAN for each OpenStack project. We used the -s option of ping to
change the packet size. We watched as sometimes packets would fully return, some‐
times they’d only make it out and never back in, and sometimes the packets would
stop at a random point. We changed tcpdump to start displaying the hex dump of the
packet. We pinged between every combination of outside, controller, compute, and
instance.

Finally, Alvaro noticed something. When a packet from the outside hits the cloud
controller, it should not be configured with a VLAN. We verified this as true. When
the packet went from the cloud controller to the compute node, it should only have a
VLAN if it was destined for an instance. This was still true. When the ping reply was
sent from the instance, it should be in a VLAN. True. When it came back to the cloud
controller and on its way out to the public internet, it should no longer have a VLAN.
False. Uh oh. It looked as though the VLAN part of the packet was not being re‐
moved.

188 | Appendix B: Tales From the Cryp^H^H^H^H Cloud

That made no sense.

While bouncing this idea around in our heads, I was randomly typing commands on
the compute node:

$ ip a
…
10: vlan100@vlan20: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue mas
ter br100 state UP
…

“Hey Alvaro, can you run a VLAN on top of a VLAN?”

“If you did, you’d add an extra 4 bytes to the packet…”

Then it all made sense…

$ grep vlan_interface /etc/nova/nova.conf
vlan_interface=vlan20

In nova.conf, vlan_interface specifies what interface OpenStack should attach all
VLANs to. The correct setting should have been:

vlan_interface=bond0

.

As this would be the server’s bonded NIC.

vlan20 is the VLAN that the data center gave us for outgoing public internet access.
It’s a correct VLAN and is also attached to bond0.

By mistake, I configured OpenStack to attach all tenant VLANs to vlan20 instead of
bond0 thereby stacking one VLAN on top of another which then added an extra 4
bytes to each packet which cause a packet of 1504 bytes to be sent out which would
cause problems when it arrived at an interface that only accepted 1500!

As soon as this setting was fixed, everything worked.

“The Issue”
At the end of August 2012, a post-secondary school in Alberta, Canada migrated its
infrastructure to an OpenStack cloud. As luck would have it, within the first day or
two of it running, one of their servers just disappeared from the network. Blip. Gone.

After restarting the instance, everything was back up and running. We reviewed the
logs and saw that at some point, network communication stopped and then every‐
thing went idle. We chalked this up to a random occurrence.

A few nights later, it happened again.

Tales From the Cryp^H^H^H^H Cloud | 189

We reviewed both sets of logs. The one thing that stood out the most was DHCP. At
the time, OpenStack, by default, set DHCP leases for one minute (it’s now two mi‐
nutes). This means that every instance contacts the cloud controller (DHCP server)
to renew its fixed IP. For some reason, this instance could not renew its IP. We corre‐
lated the instance’s logs with the logs on the cloud controller and put together a con‐
versation:

1. Instance tries to renew IP.
2. Cloud controller receives the renewal request and sends a response.
3. Instance “ignores” the response and re-sends the renewal request.
4. Cloud controller receives the second request and sends a new response.
5. Instance begins sending a renewal request to 255.255.255.255 since it hasn’t

heard back from the cloud controller.
6. The cloud controller receives the 255.255.255.255 request and sends a third re‐

sponse.
7. The instance finally gives up.

With this information in hand, we were sure that the problem had to do with DHCP.
We thought that for some reason, the instance wasn’t getting a new IP address and
with no IP, it shut itself off from the network.

A quick Google search turned up this: DHCP lease errors in VLAN mode (https://
lists.launchpad.net/openstack/msg11696.html) which further supported our DHCP
theory.

An initial idea was to just increase the lease time. If the instance only renewed once
every week, the chances of this problem happening would be tremendously smaller
than every minute. This didn’t solve the problem, though. It was just covering the
problem up.

We decided to have tcpdump run on this instance and see if we could catch it in ac‐
tion again. Sure enough, we did.

The tcpdump looked very, very weird. In short, it looked as though network commu‐
nication stopped before the instance tried to renew its IP. Since there is so much
DHCP chatter from a one minute lease, it’s very hard to confirm it, but even with on‐
ly milliseconds difference between packets, if one packet arrives first, it arrived first,
and if that packet reported network issues, then it had to have happened before
DHCP.

Additionally, this instance in question was responsible for a very, very large backup
job each night. While “The Issue” (as we were now calling it) didn’t happen exactly

190 | Appendix B: Tales From the Cryp^H^H^H^H Cloud

https://lists.launchpad.net/openstack/msg11696.html

when the backup happened, it was close enough (a few hours) that we couldn’t ignore
it.

Further days go by and we catch The Issue in action more and more. We find that
dhclient is not running after The Issue happens. Now we’re back to thinking it’s a
DHCP issue. Running /etc/init.d/networking restart brings everything back up
and running.

Ever have one of those days where all of the sudden you get the Google results you
were looking for? Well, that’s what happened here. I was looking for information on
dhclient and why it dies when it can’t renew its lease and all of the sudden I found a
bunch of OpenStack and dnsmasq discussions that were identical to the problem we
were seeing!

Problem with Heavy Network IO and Dnsmasq (http://www.gossamer-threads.com/
lists/openstack/operators/18197)

instances losing IP address while running, due to No DHCPOFFER (http://
www.gossamer-threads.com/lists/openstack/dev/14696)

Seriously, Google.

This bug report was the key to everything: KVM images lose connectivity with bridg‐
ed network (https://bugs.launchpad.net/ubuntu/+source/qemu-kvm/+bug/997978)

It was funny to read the report. It was full of people who had some strange network
problem but didn’t quite explain it in the same way.

So it was a qemu/kvm bug.

At the same time of finding the bug report, a co-worker was able to successfully re‐
produce The Issue! How? He used iperf to spew a ton of bandwidth at an instance.
Within 30 minutes, the instance just disappeared from the network.

Armed with a patched qemu and a way to reproduce, we set out to see if we’ve finally
solved The Issue. After 48 hours straight of hammering the instance with bandwidth,
we were confident. The rest is history. You can search the bug report for “joe” to find
my comments and actual tests.

Disappearing Images
At the end of 2012, Cybera (a nonprofit with a mandate to oversee the development
of cyberinfrastructure in Alberta, Canada) deployed an updated OpenStack cloud for
their DAIR project (http://www.canarie.ca/en/dair-program/about). A few days into
production, a compute node locks up. Upon rebooting the node, I checked to see
what instances were hosted on that node so I could boot them on behalf of the cus‐
tomer. Luckily, only one instance.

Tales From the Cryp^H^H^H^H Cloud | 191

http://www.gossamer-threads.com/lists/openstack/operators/18197
http://www.gossamer-threads.com/lists/openstack/dev/14696
https://bugs.launchpad.net/ubuntu/+source/qemu-kvm/+bug/997978
https://bugs.launchpad.net/ubuntu/+source/qemu-kvm/+bug/997978
http://www.canarie.ca/en/dair-program/about

The nova reboot command wasn’t working, so I used virsh, but it immediately came
back with an error saying it was unable to find the backing disk. In this case, the
backing disk is the Glance image that is copied to /var/lib/nova/instances/_base
when the image is used for the first time. Why couldn’t it find it? I checked the direc‐
tory and sure enough it was gone.

I reviewed the nova database and saw the instance’s entry in the nova.instances
table. The image that the instance was using matched what virsh was reporting, so no
inconsistency there.

I checked Glance and noticed that this image was a snapshot that the user created. At
least that was good news — this user would have been the only user affected.

Finally, I checked StackTach and reviewed the user’s events. They had created and de‐
leted several snapshots — most likely experimenting. Although the timestamps didn’t
match up, my conclusion was that they launched their instance and then deleted the
snapshot and it was somehow removed from /var/lib/nova/instances/_base.
None of that made sense, but it was the best I could come up with.

It turns out the reason that this compute node locked up was a hardware issue. We
removed it from the DAIR cloud and called Dell to have it serviced. Dell arrived and
began working. Somehow or another (or a fat finger), a different compute node was
bumped and rebooted. Great.

When this node fully booted, I ran through the same scenario of seeing what instan‐
ces were running so I could turn them back on. There were a total of four. Three boo‐
ted and one gave an error. It was the same error as before: unable to find the backing
disk. Seriously, what?

Again, it turns out that the image was a snapshot. The three other instances that suc‐
cessfully started were standard cloud images. Was it a problem with snapshots? That
didn’t make sense.

A note about DAIR’s architecture: /var/lib/nova/instances is a shared NFS mount.
This means that all compute nodes have access to it, which includes the _base direc‐
tory. Another centralized area is /var/log/rsyslog on the cloud controller. This di‐
rectory collects all OpenStack logs from all compute nodes. I wondered if there were
any entries for the file that virsh is reporting:

dair-ua-c03/nova.log:Dec 19 12:10:59 dair-ua-c03
2012-12-19 12:10:59 INFO nova.virt.libvirt.imagecache
[-] Removing base file:
/var/lib/nova/instances/_base/7b4783508212f5d242cbf9ff56fb8d33b4ce6166_10

Ah-hah! So OpenStack was deleting it. But why?

192 | Appendix B: Tales From the Cryp^H^H^H^H Cloud

A feature was introduced in Essex to periodically check and see if there were any
_base files not in use. If there were, Nova would delete them. This idea sounds inno‐
cent enough and has some good qualities to it. But how did this feature end up
turned on? It was disabled by default in Essex. As it should be. It was decided to be
turned on in Folsom (https://bugs.launchpad.net/nova/+bug/1029674). I cannot em‐
phasize enough that:

Actions which delete things should not be enabled by default.

Disk space is cheap these days. Data recovery is not.

Secondly, DAIR’s shared /var/lib/nova/instances directory contributed to the
problem. Since all compute nodes have access to this directory, all compute nodes pe‐
riodically review the _base directory. If there is only one instance using an image, and
the node that the instance is on is down for a few minutes, it won’t be able to mark
the image as still in use. Therefore, the image seems like it’s not in use and is deleted.
When the compute node comes back online, the instance hosted on that node is un‐
able to start.

The Valentine’s Day Compute Node Massacre
Although the title of this story is much more dramatic than the actual event, I don’t
think, or hope, that I’ll have the opportunity to use “Valentine’s Day Massacre” again
in a title.

This past Valentine’s Day, I received an alert that a compute node was no longer avail‐
able in the cloud — meaning,

 $

 nova-manage service list

showed this particular node with a status of XXX

.

I logged into the cloud controller and was able to both ping and SSH into the prob‐
lematic compute node which seemed very odd. Usually if I receive this type of alert,
the compute node has totally locked up and would be inaccessible.

After a few minutes of troubleshooting, I saw the following details:

• A user recently tried launching a CentOS instance on that node
• This user was the only user on the node (new node)
• The load shot up to 8 right before I received the alert

Tales From the Cryp^H^H^H^H Cloud | 193

https://bugs.launchpad.net/nova/+bug/1029674
https://bugs.launchpad.net/nova/+bug/1029674

• The bonded 10gb network device (bond0) was in a DOWN state
• The 1gb NIC was still alive and active

I looked at the status of both NICs in the bonded pair and saw that neither was able
to communicate with the switch port. Seeing as how each NIC in the bond is connec‐
ted to a separate switch, I thought that the chance of a switch port dying on each
switch at the same time was quite improbable. I concluded that the 10gb dual port
NIC had died and needed replaced. I created a ticket for the hardware support de‐
partment at the data center where the node was hosted. I felt lucky that this was a new
node and no one else was hosted on it yet.

An hour later I received the same alert, but for another compute node. Crap. OK,
now there’s definitely a problem going on. Just like the original node, I was able to log
in by SSH. The bond0 NIC was DOWN but the 1gb NIC was active.

And the best part: the same user had just tried creating a CentOS instance. What?

I was totally confused at this point, so I texted our network admin to see if he was
available to help. He logged in to both switches and immediately saw the problem: the
switches detected spanning tree packets coming from the two compute nodes and
immediately shut the ports down to prevent spanning tree loops:

 Feb 15 01:40:18 SW-1 Stp: %SPANTREE-4-BLOCK_BPDUGUARD: Received BPDU pack
et on Port-Channel35 with BPDU guard enabled. Disabling interface. (source mac
fa:16:3e:24:e7:22)
Feb 15 01:40:18 SW-1 Ebra: %ETH-4-ERRDISABLE: bpduguard error detected on Port-
Channel35.
Feb 15 01:40:18 SW-1 Mlag: %MLAG-4-INTF_INACTIVE_LOCAL: Local interface Port-
Channel35 is link down. MLAG 35 is inactive.
Feb 15 01:40:18 SW-1 Ebra: %LINEPROTO-5-UPDOWN: Line protocol on Interface Port-
Channel35 (Server35), changed state to down
Feb 15 01:40:19 SW-1 Stp: %SPANTREE-6-INTERFACE_DEL: Interface Port-Channel35
has been removed from instance MST0
Feb 15 01:40:19 SW-1 Ebra: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ether
net35 (Server35), changed state to down

He re-enabled the switch ports and the two compute nodes immediately came back to
life.

Unfortunately, this story has an open ending... we’re still looking into why the CentOS
image was sending out spanning tree packets. Further, we’re researching a proper way
on how to mitigate this from happening. It’s a bigger issue than one might think.
While it’s extremely important for switches to prevent spanning tree loops, it’s very
problematic to have an entire compute node be cut from the network when this hap‐
pens. If a compute node is hosting 100 instances and one of them sends a spanning
tree packet, that instance has effectively DDOS’d the other 99 instances.

194 | Appendix B: Tales From the Cryp^H^H^H^H Cloud

This is an ongoing and hot topic in networking circles — especially with the raise of
virtualization and virtual switches.

Down the Rabbit Hole
Users being able to retrieve console logs from running instances is a boon for support
— many times they can figure out what’s going on inside their instance and fix what’s
going on without bothering you. Unfortunately, sometimes overzealous logging of
failures can cause problems of its own.

A report came in: VMs were launching slowly, or not at all. Cue the standard checks
— nothing on the nagios, but there was a spike in network towards the current mas‐
ter of our RabbitMQ cluster. Investigation started, but soon the other parts of the
queue cluster were leaking memory like a sieve. Then the alert came in — the master
rabbit server went down. Connections failed over to the slave.

At that time, our control services were hosted by another team and we didn’t have
much debugging information to determine what was going on with the master, and
couldn’t reboot it. That team noted that it failed without alert, but managed to reboot
it. After an hour, the cluster had returned to its normal state and we went home for
the day.

Continuing the diagnosis the next morning was kick started by another identical fail‐
ure. We quickly got the message queue running again, and tried to work out why
Rabbit was suffering from so much network traffic. Enabling debug logging on nova-
api quickly brought understanding. A tail -f /var/log/nova/nova-api.log was scrolling
by faster than we’d ever seen before. CTRL+C on that and we could plainly see the
contents of a system log spewing failures over and over again - a system log from one
of our users’ instances.

After finding the instance ID we headed over to /var/lib/nova/instances to find
the console.log:

adm@cc12:/var/lib/nova/instances/instance-00000e05# wc -l console.log
92890453 console.log
adm@cc12:/var/lib/nova/instances/instance-00000e05# ls -sh console.log
5.5G console.log

Sure enough, the user had been periodically refreshing the console log page on the
dashboard and the 5G file was traversing the rabbit cluster to get to the dashboard.

We called them and asked them to stop for a while, and they were happy to abandon
the horribly broken VM. After that, we started monitoring the size of console logs.

Tales From the Cryp^H^H^H^H Cloud | 195

To this day, the issue (https://bugs.launchpad.net/nova/+bug/832507) doesn’t have a
permanent resolution, but we look forward to the discussion at the next summit.

196 | Appendix B: Tales From the Cryp^H^H^H^H Cloud

https://bugs.launchpad.net/nova/+bug/832507

APPENDIX C

Resources

OpenStack

OpenStack Configuration Reference (http://docs.openstack.org/trunk/config-
reference/content/section_compute-hypervisors.html)

OpenStack Install Guide - Ubuntu (http://docs.openstack.org/havana/install-guide/
install/apt/content/)

OpenStack Cloud Administrator Guide (http://docs.openstack.org/admin-guide-
cloud/content/)

OpenStack Security Guide (http://docs.openstack.org/security-guide/content/)

OpenStack Cloud Computing Cookbook (http://www.packtpub.com/openstack-
cloud-computing-cookbook-second-edition/book)

Cloud (general)

NIST Cloud Computing Definition (http://csrc.nist.gov/publications/nistpubs/
800-145/SP800-145.pdf)

Python

Dive Into Python (http://www.diveintopython.net)

Networking

TCP/IP Illustrated (http://www.pearsonhighered.com/educator/product/TCPIP-
Illustrated-Volume-1-The-Protocols/9780321336316.page)

The TCP/IP Guide (http://nostarch.com/tcpip.htm)

A tcpdump Tutorial and Primer (http://danielmiessler.com/study/tcpdump/)

http://docs.openstack.org/trunk/config-reference/content/
http://docs.openstack.org/havana/install-guide/install/apt/content/
http://docs.openstack.org/admin-guide-cloud/content/
http://docs.openstack.org/security-guide/content/
http://www.packtpub.com/openstack-cloud-computing-cookbook-second-edition/book
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.diveintopython.net
http://www.pearsonhighered.com/educator/product/TCPIP-Illustrated-Volume-1-The-Protocols/9780321336316.page
http://nostarch.com/tcpip.htm
http://danielmiessler.com/study/tcpdump/

Systems administration

UNIX and Linux Systems Administration Handbook (http://www.admin.com/)

Virtualization

The Book of Xen (http://nostarch.com/xen.htm)

Configuration management

Puppet Labs Documentation (http://docs.puppetlabs.com/)

Pro Puppet (http://www.apress.com/9781430230571)

198 | Appendix C: Resources

198

http://www.admin.com/
http://nostarch.com/xen.htm
http://docs.puppetlabs.com/
http://www.apress.com/9781430230571

Glossary

Use this glossary to get definitions of OpenStack-related words and phrases.

To add to this glossary, fork the openstack/openstack-manuals repository on git‐
hub.com and update the source files through the OpenStack contribution process.
account

The swift context of an account, or a user
account from an identity service such as
Active Directory, /etc/passwd, Open‐
LDAP, keystone, and so on.

account auditor
Checks for missing replicas, incorrect,
and corrupted objects in a specified swift
account by running queries against the
back-end SQLite database.

account database
An SQLite database that contains swift ac‐
counts and related metadata and is ac‐
cessed by the accounts server. Alternately,
the keystone back-end which contains ac‐
counts.

account reaper
A swift worker that scans for and deletes
account databases that are marked for de‐
letion on an account server.

account server
Lists containers in swift and stores con‐
tainer information in the account data‐
base.

account service
Component of swift that provides account
services such as list, create, modify, and

audit. Do not confuse with keystone,
OpenLDAP, or similar user account serv‐
ices.

Active Directory
Authentication and Identity Service by
Microsoft, based on LDAP. Supported in
OpenStack.

address pool
A group of fixed and/or floating IP ad‐
dresses that are assigned to a nova project
and can be used by or assigned to the VM
instances in a project.

admin API
A subset of API calls that are accessible to
authorized administrators and are gener‐
ally not accessible to end users or the pub‐
lic internet, can exist as a separate service
(keystone) or can be a subset of another
API (nova).

Amazon Kernel Image (AKI)
Both a VM container format and a VM
disk format. Supported by glance.

Amazon Machine Image (AMI)
Both a VM container format and a VM
disk format. Supported by glance.

199

Amazon Ramdisk Image (ARI)
Both a VM container format and a VM
disk format. Supported by glance.

Apache
The most common web server software
currently used on the Internet, known as
HTTPd.

Apache License 2.0
All OpenStack core projects are provided
under the terms of the Apache License 2.0
license.

API endpoint
The daemon, worker, or service that a cli‐
ent communicates with to access an API.
In OpenStack, API endpoints can provide
services such as authentication, adding
images, booting virtual machines, and at‐
taching volumes.

API extension
A feature of nova and quantum that al‐
lows custom modules to extend the core
APIs.

API extension plug-in
Alternative term for a quantum plug-in or
quantum API extension.

API server
Any node running a daemon or worker
that provides an API endpoint.

API version
In OpenStack, a the API version for a
project is part of the URL. For example,
example.com/nova/v1/foobar.

Application Programming Interface (API)
A collection of specifications used to ac‐
cess a service, application, or program. In‐
cludes service calls, required parameters
for each call, and the expected return val‐
ues.

arptables
Used along with iptables, ebtables, and
ip6tables in nova to provide firewall serv‐
ices.

Asynchronous JavaScript and XML (AJAX)
A group of interrelated web development
techniques used on the client-side to cre‐
ate asynchronous web applications. Used
extensively in horizon.

attachment (network)
Association of an interface ID to a logical
port. Plugs an interface into a port.

auditor
A worker process that verifies the integri‐
ty of swift objects, containers, and ac‐
counts. Auditors is the collective term for
the swift account auditor, container audi‐
tor, and object auditor.

Austin
Project name for the initial release of
OpenStack.

authentication
The process that confirms that the user,
process, or client is really who they say
they are through private key, secret token,
password, fingerprint, or similar method.
Abbreviated as AuthN.

authentication token
A string of text provided to the client after
authentication. Must be provided by the
user or process in subsequent requests to
the API endpoint.

authorization
The act of verifying that a user, process, or
client is authorized to perform an action,
such as delete a swift object, list a swift
container, start a nova VM, reset a pass‐
word, and so on. Abbreviate as AuthZ.

availability zone
A segregated area of a cloud deployment.

Amazon Ramdisk Image (ARI)

200 | Glossary

back-end catalog
The storage method used by the keystone
catalog service to store and retrieve infor‐
mation about API endpoints that are
available to the client. Examples include a
SQL database, LDAP database, or KVS
back-end.

back-end store
The persistent data store used that glance
uses to retrieve and store VM images. Op‐
tions include swift, local file system, S3,
and HTTP.

bare
A glance container format that indicates
that no container exists for the VM image.

Bexar
A grouped release of projects related to
OpenStack that came out in February of
2011. It included Compute (nova) and
Object Storage (swift) only.

block device
A device that moves data in the form of
blocks. These device nodes interface the

devices, such as hard disks, CD-ROM
drives, flash drives, and other addressable
regions of memory.

block migration
A method of VM live migration used by
KVM to evacuate instances from one host
to another with very little downtime dur‐
ing a user-initiated switch-over. Does not
require shared storage. Supported by no‐
va.

bootable disk image
A type of VM image that exists as a single,
bootable file.

builder file
Contains configuration information for a
swift ring, and is used to re-configure the
ring or to recreate it from scratch after a
serious failure.

cache pruner
An executable program that is used to
keep a glance VM image cache at or below
its configured maximum size.

Cactus
An OpenStack grouped release of projects
that came out in the spring of 2011. It in‐
cluded Compute (nova), Object Storage
(swift), and the Image service (glance).

capability
Defines resources for a cell, including
CPU, storage, and networking. Can apply
to the specific services within a cell or a
whole cell.

capacity cache
A table within the nova back-end database
that contains the current workload,
amount of free RAM, number of VMs
running on each host. Used to determine
on which VM a host starts.

capacity updater
A notification driver that monitors VM
instances and updates the capacity cache
as needed.

catalog
Contains a list of available API endpoints
to a user after they authenticate to key‐
stone.

catalog service
A keystone service that provides a list of
available API endpoints to a user after
they authenticate to keystone.

ceilometer
An incubated project that provides meter‐
ing and billing facilities for OpenStack.

cell
Provides logical partitioning of nova re‐
sources in a child and parent relationship.
Requests are passed from parent cells to
child cells if the parent cannot provide the
requested resource.

cell

Glossary | 201

cell forwarding
A nova option that allows parent cells to
pass resource requests to child cells if the
parent cannot provide the requested re‐
source.

cell manager
The nova component that contains a list
of the current capabilities of each host
within the cell and routes requests as ap‐
propriate.

Ceph
Massively scalable distributed storage sys‐
tem that consists of an object store, block
store, and POSIX-compatible distributed
file system. Compatible with OpenStack.

CephFS
The POSIX-compliant file system provid‐
ed by Ceph.

certificate authority
A simple certificate authority provided by
nova for cloudpipe VPNs and VM image
decryption.

chance scheduler
A scheduling method used by nova that
randomly chooses an available host from
the pool.

changes-since
A nova API parameter that allows you to
download changes to the requested item
since your last request, instead of down‐
loading a new, fresh set of data and com‐
paring it against the old data.

Chef
A configuration management tool that
supports OpenStack.

child cell
If a requested resource such as CPU time,
disk storage, or memory is not available in
the parent cell, the request is forwarded to
its associated child cells. If the child cell
can fulfill the request, it does. Otherwise,
it attempts to pass the request to any of its
children.

cinder
The OpenStack Block Storage service that
maintains the block devices that can be at‐
tached to virtual machine instances.

cloud architect
A person who plans, designs, and oversees
the creation of clouds.

cloud controller node
A node that runs network, volume, API,
scheduler and image services. Each ser‐
vice may be broken out into separate no‐
des for scalability or availability.

cloud-init
A package commonly installed in VM im‐
ages that performs initialization of an in‐
stance after boot using information that it
retrieves from the metadata service such
as the SSH public key and user data.

cloudpipe
A service in nova used to create VPNs on
a per-project basis.

cloudpipe image
A pre-made VM image that serves as a
cloudpipe server. Essentially, OpenVPN
running on Linux.

command filter
Lists allowed commands within the nova
rootwrap facility.

community project
A project that is not officially endorsed by
the OpenStack Foundation. If the project
is successful enough, it might be elevated
to an incubated project and then to a core
project, or it might be merged with the
main code trunk.

Compute API
The nova-api daemon that provides access
to the nova services. Can also communi‐
cate with some outside APIs such as the
Amazons EC2 API.

Compute API extension
Alternative term for a nova API exten‐
sion.

cell forwarding

202 | Glossary

compute controller
The nova component that chooses suit‐
able hosts on which to start VM instances.

compute node
A node that runs the nova-compute dae‐
mon and the virtual machine instances.

compute service
Alternative term for the nova component
that manages VMs.

concatenated object
A segmented large object within swift that
is put back together again and then sent to
the client.

consistency window
The amount of time it takes for a new
swift object to become accessible to all cli‐
ents.

console log
Contains the output from a Linux VM
console in nova.

container
Used to organize and store objects within
swift, similar to the concept as a Linux di‐
rectory but cannot be nested. Alternative
term for a glance container format.

container auditor
Checks for missing replicas or incorrect
objects in the specified swift containers
through queries to the SQLite back-end
database.

container database
A SQLite database that contains swift con‐
tainers and related metadata and is ac‐
cessed by the container server

container format
The “envelope” used by glance to store a
VM image and its associated metadata,
such as machine state, OS disk size, and so
on.

container server
Component of swift that manages con‐
tainers.

container service
The swift component that provides con‐
tainer services, such as create, delete, list,
and so on.

controller node
Alternative term for a cloud controller
node.

core API
Depending on context, the core API is ei‐
ther the OpenStack API or the main API
of a specific core project, such as nova,
quantum, glance, and so on.

core project
An official OpenStack project. Currently
consists of Compute (nova), Object Stor‐
age (swift), Image Service (glance), Identi‐
ty (keystone), Dashboard (horizon), Net‐
working (quantum), and Volume (cinder).

credentials
Data that is only known to or accessible
by a user that is used to verify the user is
who they say they are and presented to the
server during authentication. Examples
include a password, secret key, digital cer‐
tificate, fingerprint, and so on.

Crowbar
An open source community project by
Dell that aims to provide all necessary
services to quickly deploy clouds.

current workload
An element of the nova capacity cache
that is calculated based on the number of
build, snapshot, migrate, and resize opera‐
tions currently in progress on a given
host.

customization module
A user-created Python module that is
loaded by horizon to change the look and
feel of the dashboard.

customization module

Glossary | 203

dashboard
The web-based management interface for
OpenStack. An alternative name for hori‐
zon.

database replicator
The component of swift that copies
changes in the account, container, and ob‐
ject databases to other nodes.

default panel
The panel that is displayed when a user
accesses the horizon dashboard.

default tenant
New users are assigned to this keystone
tenant if no tenant is specified when a
user is created.

default token
A keystone token that is not associated
with a specific tenant and is exchanged for
a scoped token.

delayed delete
An option within glance so that rather
than immediately delete an image, it is de‐
leted after a pre-defined number of sec‐
onds.

delivery mode
Setting for the nova RabbitMQ message
delivery mode, can be set to either transi‐
ent or persistent.

device
In the context of swift this refers to the
underlying storage device.

device ID
Maps swift partitions to physical storage
devices.

device weight
Used to distribute the partitions among
swift devices. The distribution is usually
proportional to the storage capacity of the
device.

DevStack
Community project that uses shell scripts
to quickly deploy complete OpenStack de‐
velopment environments.

Diablo
A grouped release of projects related to
OpenStack that came out in the fall of
2011, the fourth release of OpenStack. It
included Compute (nova 2011.3), Object
Storage (swift 1.4.3), and the Image ser‐
vice (glance).

disk format
The underlying format that a disk image
for a VM is stored as within the glance
back-end store. For example, AMI, ISO,
QCOW2, VMDK, and so on.

dispersion
In swift, tools to test and ensure disper‐
sion of objects and containers to ensure
fault tolerance.

Django
A web framework used extensively in ho‐
rizon.

dnsmasq
Daemon that provides DNS, DHCP,
BOOTP, and TFTP services, used by the
nova VLAN manager and FlatDHCP
manager.

DNS record
A record that specifies information about
a particular domain and belongs to the
domain.

Dynamic Host Configuration Protocol (DHCP)
A method to automatically configure net‐
working for a host at boot time. Provided
by both quantum and nova.

ebtables
Used in nova along with arptables, ipta‐
bles, and ip6tables to create firewalls and

to ensure isolation of network communi‐
cations.

dashboard

204 | Glossary

EC2
The Amazon Elastic Compute Cloud, a
public cloud run by Amazon that provides
similar functionality to nova.

EC2 access key
Used along with an EC2 secret key to ac‐
cess the nova EC2 API.

EC2 API
OpenStack supports accessing the Ama‐
zon EC2 API through nova.

EC2 Compatibility API
A nova component that allows OpenStack
to communicate with Amazon EC2

EC2 secret key
Used along with an EC2 access key when
communicating with the nova EC2 API, is
used to digitally sign each request.

Elastic Block Storage (EBS)
The Amazon commercial block storage
product, similar to cinder.

endpoint
See API endpoint.

endpoint registry
Alternative term for a keystone catalog.

endpoint template
A list of URL and port number endpoints
that indicate where a service, such as ob‐
ject storage, compute, identity, and so on,
can be accessed.

entity
Any piece of hardware or software that
wants to connect to the network services
provided by quantum, the Network Con‐
nectivity service. An entity can make use
of quantum by implementing a VIF.

ephemeral storage
A storage volume attached to a virtual
machine instance that does not persist af‐
ter the instance is terminated.

Essex
A grouped release of projects related to
OpenStack that came out in April 2012,
the fifth release of OpenStack. It included
Compute (nova 2012.1), Object Storage
(swift 1.4.8), Image (glance), Identity
(keystone), and Dashboard (horizon).

ESX
An OpenStack-supported hypervisor,
owned by VMware.

ESXi
An OpenStack-supported hypervisor,
owned by VMware.

ETag
MD5 hash of an object within swift, used
to ensure data integrity.

euca2ools
A collection of command line tools for
administering VMs, most are compatible
with OpenStack.

evacuate
The process of migrating one or all virtual
machine (VM) instances from one host to
another, compatible with both shared
storage live migration and block migra‐
tion.

extension
Alternative term for a nova API extension
or plug-in. In the context of keystone this
is a call that is specific to the implementa‐
tion, such as adding support for OpenID.

extra specs
Additional requirements that a user can
specify when requesting a new instance,
examples include a minimum amount of
network bandwidth or a GPU.

extra specs

Glossary | 205

FakeLDAP
An easy method to create a local LDAP
directory for testing keystone and nova.
Requires Redis.

fill-first scheduler
The nova scheduling method that at‐
tempts to fill a host with VMs rather than
starting new VMs on a variety of hosts.

filter
The step of the nova scheduling process
where hosts that cannot run the VMs are
eliminated and are not chosen.

firewall
Used to restrict communications between
hosts and/or nodes, implemented in nova
using iptables, arptables, ip6tables and et‐
ables.

Fixed IP address
An IP address that is associated with the
same instance each time that instance
boots, generally not accessible to end
users or the public internet, used for man‐
agement of the instance.

FlatDHCP Manager
A nova networking manager that provides
a single Layer 2 domain for all subnets in
the OpenStack cloud. Provides a single
DHCP server for each instance of nova-
network to assign and manage IP address‐
es for all instances.

Flat Manager
The nova component that gives IP ad‐
dresses to authorized nodes and assumes
DHCP, DNS, and routing configuration
and services are provided by something
else.

flat mode injection
A nova networking method where the OS
network configuration information is in‐

jected into the VM (VM) image before the
instance starts.

flat network
A nova network configuration where all
of the instances have IP addresses on the
same subnet. Flat networks do not use
VLANs.

flavor
Describes the parameters of the various
virtual machine images that are available
to users, includes parameters such as
CPU, storage, and memory. Also known
as instance type.

flavor ID
UUID for each nova or glance VM flavor
or instance type.

Floating IP address
An IP address that a nova project can as‐
sociate with a VM so the instance has the
same public IP address each time that it
boots. You create a pool of floating IP ad‐
dresses and assign them to instances as
they are launched to maintain a consistent
IP address for maintaining DNS assign‐
ment.

Folsom
A grouped release of projects related to
OpenStack that came out in the fall of
2012, the sixth release of OpenStack. It in‐
cludes Compute (nova), Object Storage
(swift), Identity (keystone), Networking
(quantum), Image service (glance) and
Volumes or Block Storage (cinder).

FormPost
swift middleware that allows users to up‐
load (post) an image through a form on a
web page.

glance
A core project that provides the Open‐
Stack Image Service.

glance API server
Processes client requests for VMs, updates
glance metadata on the registry server,
and communicates with the store adapter

FakeLDAP

206 | Glossary

to upload VM images from the back-end
store.

global endpoint template
The keystone endpoint template that con‐
tains services available to all tenants.

GlusterFS
An open-source, distributed, shared file
system,

Grizzly
Project name for the seventh release of
OpenStack.

guest OS
An operating system instance running un‐
der the control of a hypervisor.

handover
An object state in swift where a new repli‐
ca of the object is automatically created
due to a drive failure.

hard reboot
A type of reboot where a physical or virtu‐
al power button is pressed as opposed to a
graceful, proper shutdown of the operat‐
ing system.

Heat
An integrated project that aims to orches‐
trate multiple cloud applications for
OpenStack.

horizon
The project that provides the OpenStack
Dashboard.

host
A physical computer, also known as a
node. Contrast with: instance.

host aggregate
A method to further subdivide availability
zones into a collection of hosts.

Hyper-V
One of the hypervisors supported by
OpenStack, developed by Microsoft.

hypervisor
Software that arbitrates and controls VM
access to the actual underlying hardware.

hypervisor pool
A collection of hypervisors grouped to‐
gether through host aggregates.

ID number
Unique numeric ID associated with each
user in keystone, conceptually similar to a
Linux or LDAP UID.

Identity API
Alternative term for the Identity Service
API.

Identity back-end
The source used by keystone to retrieve
user information an OpenLDAP server
for example.

Identity Service
Provides authentication services, also
known as keystone.

Identity Service API
The API used to access the OpenStack
Identity Service provided through key‐
stone.

image
A collection of files for a specific operat‐
ing system (OS) that you use to create or
rebuild a server. You can also create cus‐
tom images, or snapshots, from servers
that you have launched.

Image API
The glance API endpoint for management
of VM images.

Image API

Glossary | 207

image cache
Used by glance to allow images on the lo‐
cal host to be used rather than re-
downloading them from the image server
each time one is requested.

image ID
Combination of URI and UUID used to
access glance VM images through the im‐
age API.

image membership
A list of tenants that can access a given
VM image within glance.

image owner
The keystone tenant who owns a glance
virtual machine image.

image registry
A list of VM images that are available
through glance.

Image Service API
Alternative name for the glance image
API.

image status
The current status of a VM image in
glance, not to be confused with the status
of a running instance.

image store
The back-end store used by glance to
store VM images, options include swift,
local file system, S3, or HTTP.

image UUID
The UUID used by glance to uniquely
identify each VM image.

incubated project
A community project may be elevated to
this status and is then promoted to a core
project.

ingress filtering
The process of filtering incoming network
traffic. Supported by nova.

injection
The process of putting a file into a virtual
machine image before the instance is
started.

instance
A running VM, or a VM in a known state
such as suspended that can be used like a
hardware server.

instance ID
Unique ID that is specific to each running
nova VM instance.

instance state
The current state of a nova VM image.

instance type
Alternative term for flavor.

instance type ID
Alternative term for a flavor ID.

instance UUID
Unique ID assigned to each nova VM in‐
stance.

interface ID
Unique ID for a quantum VIF or vNIC in
the form of a UUID.

ip6tables
Used along with arptables, ebtables, and
iptables to create firewalls in nova.

iptables
Used along with arptables, ebtables, and
ip6tables to create firewalls in nova.

JavaScript Object Notation (JSON)
One of the supported response formats
for the OpenStack API.

Jenkins
Tool used for OpenStack development to
run jobs automatically.

image cache

208 | Glossary

kernel-based VM (KVM)
An OpenStack-supported hypervisor

keystone
The project that provides OpenStack
Identity services.

Kickstart
A tool to automate system configuration
and installation on Red Hat, Fedora, and
CentOS based Linux distributions.

large object
An object within swift that is larger than 5
GBs.

Launchpad
The collaboration site for OpenStack.

Layer-2 network
Term used for OSI network architecture
for the data link layer.

libvirt
Virtualization API library used by Open‐
Stack to interact with many of its support‐
ed hypervisors, including KVM, QEMU
and LXC.

Linux bridge
Software used to allow multiple VMs to
share a single physical NIC within nova.

Linux bridge quantum plug-in
Plugin that allows a Linux bridge to un‐
derstand a quantum port, interface attach‐
ment, and other abstractions.

Linux containers (LXC)
An OpenStack-supported hypervisor.

live migration
The ability within nova to move running
virtual machine instances from one host
to another with only a small service inter‐
ruption during switch-over.

management API
Alternative term for an admin API.

management network
A network segment used for administra‐
tion, not accessible to the public internet.

manifest
Used to track segments of a large object
within swift.

manifest object
A special swift object that contains the
manifest for a large object.

membership
The association between a glance VM im‐
age and a tenant, allows images to be
shared with specified tenant(s).

membership list
Contains a list of tenants that can access a
given VM image within glance.

memory overcommit
The ability to start new VM instances
based on the actual memory usage of a
host, as opposed to basing the decision on
the amount of RAM each running in‐
stance thinks it has available. Also known
as RAM overcommit.

message broker
The software package used to provide
AMQP messaging capabilities within no‐
va, default is RabbitMQ.

message bus
The main virtual communication line
used by all AMQP messages for inter-
cloud communications within nova.

message queue
Passes requests from clients to the appro‐
priate workers and returns the output to
the client once the job is complete.

message queue

Glossary | 209

migration
The process of moving a VM instance
from one host to another.

multinic
Facility in nova that allows each virtual
machine instance to have more than one
VIF connected to it.

network ID
Unique ID assigned to each network seg‐
ment within quantum.

network manager
The nova component that manages vari‐
ous network components, such as firewall
rules, IP address allocation, and so on.

network node
Any nova node that runs the network
worker daemon.

network segment
Represents a virtual, isolated OSI layer 2
subnet in quantum.

network UUID
Unique ID for a quantum network seg‐
ment.

network worker
The nova-network worker daemon, pro‐
vides services such as giving an IP address
to a booting nova instance.

non-persistent volume
Alternative term for an ephemeral vol‐
ume.

nova
The OpenStack project that provides
compute services.

nova API
Alternative term for the nova Compute
API.

nova-network
A nova component that manages IP ad‐
dress allocation, firewalls, and other
network-related tasks.

object
A BLOB of data held by swift, can be in
any format.

Object API
Alternative term for the swift object API.

object auditor
Opens all objects for an object server and
verifies the MD5 hash, size, and metadata
for each object.

object expiration
A configurable option within swift to au‐
tomatically delete objects after a specified
amount of time has passed or a certain
date is reached.

object hash
Uniquely ID for a swift object.

object path hash
Used by swift to determine the location of
an object in the ring. Maps objects to par‐
titions.

object replicator
Component of swift that copies and object
to remote partitions for fault tolerance.

object server
Component of swift that is responsible for
managing objects.

Object Service API
Alternative term for the swift object API.

migration

210 | Glossary

object storage
Provides eventually consistent and redun‐
dant storage and retrieval of fixed digital
content.

object versioning
Allows a user to set a flag on a swift con‐
tainer so all objects within the container
are versioned.

operator
The person responsible for planning and
maintaining an OpenStack installation.

parent cell
If a requested resource, such as CPU time,
disk storage, or memory, is not available
in the parent cell, the request is forwarded
to associated child cells.

partition
A unit of storage within swift used to
store objects, exists on top of devices, re‐
plicated for fault tolerance.

partition index
Contains the locations of all swift parti‐
tions within the ring.

partition shift value
Used by swift to determine which parti‐
tion data should reside on.

pause
A VM state where no changes occur (no
changes in memory, network communica‐
tions stop, etc), the VM is frozen but not
shut down.

persistent volume
Disk volumes that persist beyond the life‐
time of individual virtual machine instan‐
ces. Contrast with: ephemeral storage

plugin
Software component providing the actual
implementation for quantum APIs, or for
Compute APIs, depending on the context.

policy service
Component of keystone that provides a
rule management interface and a rule
based authorization engine.

port
A virtual network port within quantum,
VIFs / vNICs are connected to a port.

port UUID
Unique ID for a quantum port.

preseed
A tool to automate system configuration
and installation on Debian based Linux
distributions.

private image
A glance VM image that is only available
to specified tenants.

project
A logical grouping of users within nova,
used to define quotas and access to VM
images.

project ID
User defined alpha-numeric string in no‐
va, the name of a project.

project VPN
Alternative term for a cloudpipe.

proxy node
A node that provides the swift proxy ser‐
vice.

proxy server
Users of swift interact with the service
through the proxy server which in-turn
looks up the location of the requested data
within the ring and returns the results to
the user.

public API
An API endpoint used for both service to
service communication and end user in‐
teractions.

public image
A glance VM image that is available to all
tenants.

public image

Glossary | 211

public IP address
An IP address that is accessible to end-
users.

public network
The Network Controller provides virtual
networks to enable compute servers to in‐
teract with each other and with the public
network. All machines must have a public
and private network interface. The public

network interface is controlled by the
public_interface option.

Puppet
A configuration management tool that
supports OpenStack.

Python
Programming language used extensively
in OpenStack.

quantum
A core OpenStack project that provides a
network connectivity abstraction layer to
OpenStack Compute.

quantum API
API used to access quantum, provides and
extensible architecture to allow custom
plugin creation.

quantum manager
Allows nova and quantum integration
thus allowing quantum to perform net‐
work management for nova VMs.

quantum plugin
Interface within quantum that allows or‐
ganizations to create custom plugins for

advanced features such as QoS, ACLs, or
IDS.

quarantine
If swift finds objects, containers, or ac‐
counts that are corrupt they are placed in
this state, are not replicated, cannot be
read by clients, and a correct copy is re-
replicated.

Quick EMUlator (QEMU)
One of the hypervisors supported by
OpenStack, generally used for develop‐
ment purposes.

quota
In nova, the ability to set resource limits
on a per-project basis.

RAM filter
The nova setting that allows or disallows
RAM overcommitment.

RAM overcommit
The ability to start new VM instances
based on the actual memory usage of a
host, as opposed to basing the decision on
the amount of RAM each running in‐
stance thinks it has available. Also known
as memory overcommit.

rate limit
Configurable option within swift to limit
database writes on a per-account and/or
per-container basis.

rebalance
The process of distributing swift parti‐
tions across all drives in the ring, used
during initial ring creation and after ring
reconfiguration.

Recon
A component of swift used to collect met‐
rics.

record ID
A number within a database that is incre‐
mented each time a change is made. Used
by swift when replicating.

registry server
A glance service that provides VM image
metadata information to clients.

replica
Provides data redundancy and fault toler‐
ance by creating copies of swift objects,
accounts, and containers so they are not
lost when the underlying storage fails.

replica count
The number of replicas of the data in a
swift ring.

public IP address

212 | Glossary

replication
The process of copying data to a separate
physical device for fault tolerance and
performance.

replicator
The swift back-end process that creates
and manages object replicas.

request ID
Unique ID assigned to each request sent
to nova.

ring
An entity that maps swift data to parti‐
tions. A separate ring exists for each ser‐
vice, such as account, object, and contain‐
er.

ring builder
Builds and manages rings within swift, as‐
signs partitions to devices, and pushes the
configuration to other storage nodes.

role ID
Alpha-numeric ID assigned to each key‐
stone role.

rootwrap
A feature of nova that allows the unprivi‐
leged “nova” user to run a specified list of
commands as the Linux root user.

RPC driver
Modular system that allows the nova un‐
derlying message queue software to be
changed. For example, from RabbitMQ to
ZeroMQ or Qpid.

S3
Object storage service by Amazon, similar
in function to swift, can act as a back-end
store for glance VM images.

scheduler manager
A nova component that determines where
VM instances should start. Uses modular
design to support a variety of scheduler
types.

scoped token
A keystone API access token that is asso‐
ciated with a specific tenant.

secret key
String of text only known by the user,
used along with an access key to make re‐
quests to the nova API.

security group
A set of network traffic filtering rules that
are applied to a nova instance.

segmented object
A swift large object that has been broken
up into pieces, the re-assembled object is
called a concatenated object.

server image
Alternative term for a VM image.

server UUID
Unique ID assigned to each nova VM in‐
stance.

service catalog
Alternative term for the keystone catalog.

service ID
Unique ID assigned to each service that is
available in the keystone catalog.

service registration
A keystone feature that allows services
such as nova to automatically register with
the catalog.

service tenant
Special keystone tenant that contains all
services that are listed in the catalog.

service token
An administrator defined token used by
nova to communicate securely with key‐
stone.

service token

Glossary | 213

session back-end
The method of storage used by horizon to
track client sessions such as local memory,
cookies, a database, or memcached.

session persistence
A feature of the load balancing service. It
attempts to force subsequent connections
to a service to be redirected to the same
node as long as it is online.

session storage
A horizon component that stores and
tracks client session information. Imple‐
mented through the Django sessions
framework.

shared storage
Block storage that is simultaneously acces‐
sible by multiple clients. For example,
NFS.

SmokeStack
Runs automated tests against the core
OpenStack API, written in Rails.

snapshot
A point-in-time copy of an OpenStack
storage volume or image. Use storage vol‐
ume snapshots to back up volumes. Use
image snapshots to back up data, or as
“gold” images for additional servers.

spread-first scheduler
The nova VM scheduling algorithm that
attempts to start new VM on the host with
the least amount of load.

SQLAlchemy
An open source SQL toolkit for Python,
used in OpenStack.

SQLite
A lightweight SQL database, used as the
default persistent storage method in many
OpenStack services.

StackTach
Community project that captures nova
AMQP communications, useful for de‐
bugging.

static IP address
Alternative term for a fixed IP address.

StaticWeb
WSGI middleware component of swift
that serves container data as a static web
page.

storage back-end
The method that a service uses for persis‐
tent storage such as iSCSI, NFS, or local
disk.

storage node
A swift node that provides container serv‐
ices, account services, and object services,
controls the account databases, container
databases, and object storage.

storage manager
Component of XenAPI that provides a
pluggable interface to support a wide vari‐
ety of persistent storage back-ends.

storage manager back-end
A persistent storage method supported by
XenAPI such as iSCSI or NFS.

storage services
Collective name for the swift object serv‐
ices, container services, and account serv‐
ices.

swift
An OpenStack core project that provides
object storage services.

swift All in One (SAIO)
Creates a full swift development environ‐
ment within a single VM.

swift middleware
Collective term for components within
swift that allows for additional functional‐
ity.

swift proxy server
Acts as the gatekeeper to swift and is re‐
sponsible for authenticating the user.

swift storage node
A node that runs swift account, container,
and object services.

session back-end

214 | Glossary

sync point
Point in time since the last container and
accounts database sync among nodes
within swift.

TempAuth
An authentication facility within swift that
allows swift itself to perform authentica‐
tion and authorization, frequently used in
testing and development.

Tempest
Automated software test suite designed to
run against the trunk of the OpenStack
core project.

TempURL
A swift middleware component that al‐
lows a user to create URLs for temporary
object access.

tenant
A group of users, used to isolate access to
nova resources. An alternative term for a
nova project.

tenant endpoint
A keystone API endpoint that is associ‐
ated with one or more tenants.

tenant ID
Unique ID assigned to each tenant within
keystone, the nova project IDs map to the
keystone tenant IDs.

token
An alpha-numeric string of text used to
access OpenStack APIs and resources.

tombstone
Used to mark swift objects that have been
deleted, ensures the object is not updated
on another node after it has been deleted.

transaction ID
Unique ID assigned to each swift request,
used for debugging and tracing.

unscoped token
Alternative term for a keystone default to‐
ken.

updater
Collective term for a group of swift com‐
ponents that process queued and failed
updates for containers and objects.

user
In keystone each user is associated with
one or more tenants, and in nova they can
be associated with roles, projects, or both.

user data
A blob of data that can be specified by the
user when launching an instance. This da‐
ta can be accessed by the instance through
the metadata service or config drive.
Commonly used for passing a shell script
that is executed by the instance on boot.

VIF UUID
Unique ID assigned to each quantum VIF.

Virtual Central Processing Unit (vCPU)
Allows physical CPUs to be sub-divided
and those divisions are then used by in‐
stances. Also known as virtual cores.

Virtual Machine (VM)
An operating system instance that runs on
top of a hypervisor. Multiple VMs can run
at the same time on the same physical
host.

virtual network
An L2 network segment within quantum.

virtual network

Glossary | 215

Virtual Network InterFace (VIF)
An interface that is plugged into a port in
a quantum network. Typically a virtual
network interface belonging to a VM.

virtual port
Attachment point where a virtual interface
connects to a virtual network.

virtual private network (VPN)
Provided by nova in the form of cloud‐
pipes, specialized instances that are used
to create VPNs on a per-project basis.

virtual server
Alternative term for a VM or guest.

virtual switch (vSwitch)
Software that runs on a host or node and
provides the features and functions of a
hardware based network switch.

virtual VLAN
Alternative term for a virtual network.

VLAN manager
A nova networking manager that divides
subnet and tenants into different VLANs
allowing for Layer 2 segregation. Provides
a DHCP server for each VLAN to assign
IP addresses for instances.

VLAN network
The Network Controller provides virtual
networks to enable compute servers to in‐
teract with each other and with the public
network. All machines must have a public
and private network interface. A VLAN
network is a private network interface,
which is controlled by the vlan_interface
option with VLAN managers.

VM image
Alternative term for an image.

VNC proxy
A nova component that provides users ac‐
cess to the consoles of their VM instances
through VNC or VMRC.

volume
Disk-based data storage generally repre‐
sented as an iSCSI target with a file system
that supports extended attributes, can be
persistent or ephemeral. Commonly used
as a synonym for block device.

Volume API
An API on a separate endpoint for attach‐
ing, detaching, and creating block storage
for compute VMs.

volume controller
A nova component that oversees and co‐
ordinates storage volume actions.

volume driver
Alternative term for a volume plugin.

volume ID
Unique ID applied to each storage volume
under the nova control.

volume manager
A nova component that creates, attaches,
and detaches persistent storage volumes.

volume node
A nova node that runs the cinder-volume
daemon.

volume plugin
A plugin for the nova volume manager.
Provides support for a new and special‐
ized types of back-end storage.

Volume Service API
Alternative term for the Block Storage
API.

volume worker
The nova component that interacts with
back-end storage to manage the creation
and deletion of volumes and the creation
of compute volumes, provided by the
nova-volume daemon.

Virtual Network InterFace (VIF)

216 | Glossary

weight
Used by swift storage devices to determine
which storage devices are suitable for the
job. Devices are weighted by size.

weighted cost
The sum of each cost used when deciding
where to start a new VM instance in nova.

weighing
A nova process that determines the suita‐
bility of the VM instances for a job for a

particular host. For example, not enough
RAM on the host, too many CPUs on the
host, and so on.

worker
A daemon that carries out tasks. For ex‐
ample, the nova-volume worker attaches
storage to an VM instance. Workers listen
to a queue and take action when new mes‐
sages arrive.

Zuul
Tool used in OpenStack development to
ensure correctly ordered testing of
changes in parallel.

Zuul

Glossary | 217

	Table of Contents
	Acknowledgments
	Preface
	Introduction to OpenStack
	Who This Book Is For
	How This Book Is Organized
	Why and How We Wrote This Book
	How to Contribute to This Book

	Provisioning and Deployment
	Automated Deployment
	Disk Partitioning and RAID
	Network Configuration

	Automated Configuration
	Remote Management

	Cloud Controller Design
	Hardware Considerations
	Separation of Services
	Database
	Message Queue
	Application Programming Interface (API)
	Extensions
	Scheduler
	Images
	Dashboard
	Authentication and Authorization
	Network Considerations

	Scaling
	The Starting Point
	Adding Controller Nodes
	Segregating Your Cloud
	Cells and Regions
	Availability Zones and Host Aggregates

	Scalable Hardware
	Hardware Procurement
	Capacity Planning
	Burn-in Testing

	Compute Nodes
	CPU Choice
	Hypervisor Choice
	Instance Storage Solutions
	Off Compute Node Storage – Shared File
 System
	On Compute Node Storage – Shared File
 System
	On Compute Node Storage – Non-shared File
 System
	Issues with Live Migration
	Choice of File System

	Overcommitting
	Logging
	Networking

	Storage Decisions
	OpenStack Storage Concepts
	Object Storage
	Block Storage
	File-level Storage

	Choosing Storage Back-ends
	Commodity Storage Back-end Technologies

	Notes on OpenStack Object Storage

	Network Design
	Management Network
	Public Addressing Options
	IP Address Planning
	Network Topology
	VLANs
	Multi-NIC
	Multi-host and Single-host Networking

	Services for Networking
	NTP
	DNS

	Example Architecture
	Overview
	Rationale
	Why Not Use the OpenStack Network Service
 (quantum)?
	Why Use Multi-host Networking?

	Detailed Description
	Optional Extensions

	Lay of the Land
	Client Command Line Tools
	Installing the Tools
	Administrative Command Line Tools
	Getting Credentials
	Command Line Tricks and Traps
	Servers and Services
	Diagnose your compute nodes

	Network
	Users and Projects
	Running Instances

	Managing Projects and Users
	Projects or Tenants?
	Managing Projects
	Adding Projects

	Quotas
	Set Compute Service Quotas
	Set Block Storage quotas

	User Management
	Creating New Users
	Associating Users with Projects
	Customizing Authorization
	Users that Disrupt Other Users

	User-facing Operations
	Images
	Adding Images
	Deleting Images
	Other CLI Options
	The Image Service and the Database
	Example Image Service Database Queries

	Flavors
	How do I modify an existing flavor?

	Security groups
	Block Storage
	Block Storage Creation Failures

	Instances
	Starting Instances
	Instance Boot Failures
	Instance-specific Data

	Associating Security Groups
	Floating IPs
	Attaching Block Storage
	Taking Snapshots
	Ensuring snapshots are consistent

	Instances in the Database

	Maintenance, Failures, and Debugging
	Cloud Controller and Storage Proxy Failures and Maintenance
	Planned Maintenance
	Rebooting a cloud controller or Storage Proxy
	After a Cloud Controller or Storage Proxy Reboots
	Total Cloud Controller Failure

	Compute Node Failures and Maintenance
	Planned Maintenance
	After a Compute Node Reboots
	Instances
	Inspecting and Recovering Data from Failed Instances
	Volumes
	Total Compute Node Failure
	/var/lib/nova/instances

	Storage Node Failures and Maintenance
	Rebooting a Storage Node
	Shutting Down a Storage Node
	Replacing a Swift Disk

	Handling a Complete Failure
	Configuration Management
	Working with Hardware
	Adding a Compute Node
	Adding an Object Storage Node
	Replacing Components

	Databases
	Database Connectivity
	Performance and Optimizing

	HDWMY
	Hourly
	Daily
	Weekly
	Monthly
	Quarterly
	Semi-Annually

	Determining which Component Is Broken
	Tailing Logs
	Running Daemons on the CLI
	Example of Complexity

	Upgrades
	Uninstalling

	Network Troubleshooting
	Using “ip a” to Check Interface States
	Network Traffic in the Cloud
	Finding a Failure in the Path
	tcpdump
	iptables
	Network Configuration in the Database
	Manually De-Associating a Floating IP

	Debugging DHCP Issues
	Debugging DNS Issues

	Logging and Monitoring
	Where Are the Logs?
	Cloud Controller
	Compute Nodes
	Block Storage Nodes

	How to Read the Logs
	Tracing Instance Requests
	Adding Custom Logging Statements
	RabbitMQ Web Management Interface or rabbitmqctl
	Centrally Managing Logs
	rsyslog Client Configuration
	rsyslog Server Configuration

	StackTach
	Monitoring
	Process Monitoring
	Resource Alerting
	OpenStack-specific Resources
	Intelligent Alerting
	Trending

	Backup and Recovery
	What to Backup
	Database Backups
	File System Backups
	Compute
	Image Catalog and Delivery
	Identity
	Block Storage
	Object Storage

	Recovering Backups

	Customize
	DevStack
	Middleware Example
	Nova Scheduler Example
	Dashboard

	Upstream OpenStack
	Getting Help
	Reporting Bugs
	Confirming & Prioritizing
	Bug Fixing
	After the Change is Accepted

	Join the OpenStack Community
	Features and the Development Roadmap
	How to Contribute to the Documentation
	Security Information
	Finding Additional Information

	Advanced Configuration
	Differences between various drivers
	Periodic tasks
	Specific configuration topics
	OpenStack Compute (Nova)

	Use Cases
	NeCTAR
	Deployment
	Resources

	MIT CSAIL
	Deployment

	DAIR
	Deployment
	Resources

	CERN
	Deployment
	Resources

	Tales From the Cryp^H^H^H^H Cloud
	Double VLAN
	“The Issue”
	Disappearing Images
	The Valentine’s Day Compute Node Massacre
	Down the Rabbit Hole

	Resources
	Glossary

