openstack-manuals/doc/config-reference/object-storage/section_object-storage-features.xml
Christian Berendt a6bce01980 Unified the syntax of the XML root element (config-reference)
The XML root element of Docbook XML files should match the following
format:

<ELEMENT xmlns="http://docbook.org/ns/docbook"
  xmlns:xi="http://www.w3.org/2001/XInclude"
  xmlns:xlink="http://www.w3.org/1999/xlink"
  version="5.0"
  xml:id="THE_XML_ID_OF_THE_ELEMENT">

Change-Id: I02a75b63d0fb3ea4a7d015794b9229a94ddad279
2014-07-10 14:11:19 +02:00

665 lines
35 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="UTF-8"?>
<section xmlns="http://docbook.org/ns/docbook"
xmlns:xi="http://www.w3.org/2001/XInclude"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="5.0"
xml:id="configuring-object-storage-features">
<title>Configure Object Storage features</title>
<section xml:id="swift-zones">
<title>Object Storage zones</title>
<para>In OpenStack Object Storage, data is placed across
different tiers of failure domains. First, data is spread
across regions, then zones, then servers, and finally
across drives. Data is placed to get the highest failure
domain isolation. If you deploy multiple regions, the
Object Storage service places the data across the regions.
Within a region, each replica of the data should be stored
in unique zones, if possible. If there is only one zone,
data should be placed on different servers. And if there
is only one server, data should be placed on different
drives.</para>
<para>Regions are widely separated installations with a
high-latency or otherwise constrained network link between
them. Zones are arbitrarily assigned, and it is up to the
administrator of the Object Storage cluster to choose an
isolation level and attempt to maintain the isolation
level through appropriate zone assignment. For example, a
zone may be defined as a rack with a single power source.
Or a zone may be a DC room with a common utility provider.
Servers are identified by a unique IP/port. Drives are
locally attached storage volumes identified by mount
point.</para>
<para>In small clusters (five nodes or fewer), everything is
normally in a single zone. Larger Object Storage
deployments may assign zone designations differently; for
example, an entire cabinet or rack of servers may be
designated as a single zone to maintain replica
availability if the cabinet becomes unavailable (for
example, due to failure of the top of rack switches or a
dedicated circuit). In very large deployments, such as
service provider level deployments, each zone might have
an entirely autonomous switching and power infrastructure,
so that even the loss of an electrical circuit or
switching aggregator would result in the loss of a single
replica at most.</para>
<section xml:id="swift-zones-rackspacerecs">
<title>Rackspace zone recommendations</title>
<para>For ease of maintenance on OpenStack Object Storage,
Rackspace recommends that you set up at least five
nodes. Each node is assigned its own zone (for a total
of five zones), which gives you host level redundancy.
This enables you to take down a single zone for
maintenance and still guarantee object availability in
the event that another zone fails during your
maintenance.</para>
<para>You could keep each server in its own cabinet to achieve cabinet level isolation,
but you may wish to wait until your Object Storage service is better established
before developing cabinet-level isolation. OpenStack Object Storage is flexible; if
you later decide to change the isolation level, you can take down one zone at a time
and move them to appropriate new homes.</para>
</section>
</section>
<section xml:id="swift-raid-controller">
<title>RAID controller configuration</title>
<para>OpenStack Object Storage does not require RAID. In fact,
most RAID configurations cause significant performance
degradation. The main reason for using a RAID controller
is the battery-backed cache. It is very important for data
integrity reasons that when the operating system confirms
a write has been committed that the write has actually
been committed to a persistent location. Most disks lie
about hardware commits by default, instead writing to a
faster write cache for performance reasons. In most cases,
that write cache exists only in non-persistent memory. In
the case of a loss of power, this data may never actually
get committed to disk, resulting in discrepancies that the
underlying file system must handle.</para>
<para>OpenStack Object Storage works best on the XFS file
system, and this document assumes that the hardware being
used is configured appropriately to be mounted with the
<command>nobarriers</command> option. For more
information, refer to the XFS FAQ: <link
xlink:href="http://xfs.org/index.php/XFS_FAQ"
>http://xfs.org/index.php/XFS_FAQ</link>
</para>
<para>To get the most out of your hardware, it is essential
that every disk used in OpenStack Object Storage is
configured as a standalone, individual RAID 0 disk; in the
case of 6 disks, you would have six RAID 0s or one JBOD.
Some RAID controllers do not support JBOD or do not
support battery backed cache with JBOD. To ensure the
integrity of your data, you must ensure that the
individual drive caches are disabled and the battery
backed cache in your RAID card is configured and used.
Failure to configure the controller properly in this case
puts data at risk in the case of sudden loss of
power.</para>
<para>You can also use hybrid drives or similar options for
battery backed up cache configurations without a RAID
controller.</para>
</section>
<section xml:id="object-storage-rate-limits">
<?dbhtml stop-chunking?>
<title>Throttle resources through rate limits</title>
<para>Rate limiting in OpenStack Object Storage is implemented
as a pluggable middleware that you configure on the proxy
server. Rate limiting is performed on requests that result
in database writes to the account and container SQLite
databases. It uses memcached and is dependent on the proxy
servers having highly synchronized time. The rate limits
are limited by the accuracy of the proxy server
clocks.</para>
<section xml:id="configuration-for-rate-limiting">
<title>Configure rate limiting</title>
<para>All configuration is optional. If no account or
container limits are provided, no rate limiting
occurs. Available configuration options
include:</para>
<xi:include
href="../../common/tables/swift-proxy-server-filter-ratelimit.xml"/>
<para>The container rate limits are linearly interpolated
from the values given. A sample container rate
limiting could be:</para>
<para>container_ratelimit_100 = 100</para>
<para>container_ratelimit_200 = 50</para>
<para>container_ratelimit_500 = 20</para>
<para>This would result in:</para>
<table rules="all">
<caption>Values for Rate Limiting with Sample
Configuration Settings</caption>
<tbody>
<tr>
<td>Container Size</td>
<td>Rate Limit</td>
</tr>
<tr>
<td>0-99</td>
<td>No limiting</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>1000</td>
<td>20</td>
</tr>
</tbody>
</table>
</section>
</section>
<section xml:id="object-storage-healthcheck">
<title>Health check</title>
<para>Provides an easy way to monitor whether the Object Storage proxy server is alive. If
you access the proxy with the path <filename>/healthcheck</filename>, it responds with
<literal>OK</literal> in the response body, which monitoring tools can use.</para>
<xi:include
href="../../common/tables/swift-account-server-filter-healthcheck.xml"
/>
</section>
<section xml:id="object-storage-domain-remap">
<title>Domain remap</title>
<para>Middleware that translates container and account parts
of a domain to path parameters that the proxy server
understands.</para>
<xi:include
href="../../common/tables/swift-proxy-server-filter-domain_remap.xml"
/>
</section>
<section xml:id="object-storage-cname-lookup">
<title>CNAME lookup</title>
<para>Middleware that translates an unknown domain in the host
header to something that ends with the configured
<code>storage_domain</code> by looking up the given domain's CNAME
record in DNS.</para>
<xi:include
href="../../common/tables/swift-proxy-server-filter-cname_lookup.xml"
/>
</section>
<section xml:id="object-storage-tempurl">
<?dbhtml stop-chunking?>
<title>Temporary URL</title>
<para>Allows the creation of URLs to provide temporary access to objects. For example, a
website may wish to provide a link to download a large object in OpenStack Object
Storage, but the Object Storage account has no public access. The website can generate a
URL that provides GET access for a limited time to the resource. When the web browser
user clicks on the link, the browser downloads the object directly from Object Storage,
eliminating the need for the website to act as a proxy for the request. If the user
shares the link with all his friends, or accidentally posts it on a forum, the direct
access is limited to the expiration time set when the website created the link.</para>
<para>A temporary URL is the typical URL associated with an
object, with two additional query parameters:<variablelist>
<varlistentry>
<term><literal>temp_url_sig</literal></term>
<listitem>
<para>A cryptographic signature</para>
</listitem>
</varlistentry>
<varlistentry>
<term><literal>temp_url_expires</literal></term>
<listitem>
<para>An expiration date, in Unix time</para>
</listitem>
</varlistentry>
</variablelist></para>
<para>An example of a temporary
URL:<programlisting>
https://swift-cluster.example.com/v1/AUTH_a422b2-91f3-2f46-74b7-d7c9e8958f5d30/container/object?
temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709&amp;
temp_url_expires=1323479485
</programlisting></para>
<para>To create temporary URLs, first set the <literal>X-Account-Meta-Temp-URL-Key</literal>
header on your Object Storage account to an arbitrary string. This string serves as a
secret key. For example, to set a key of
<literal>b3968d0207b54ece87cccc06515a89d4</literal> using the
<command>swift</command> command-line tool:</para>
<screen><prompt>$</prompt> <userinput>swift post -m "Temp-URL-Key:<replaceable>b3968d0207b54ece87cccc06515a89d4</replaceable>"</userinput></screen>
<para>Next, generate an HMAC-SHA1 (RFC 2104) signature to
specify:</para>
<itemizedlist>
<listitem>
<para>Which HTTP method to allow (typically
<literal>GET</literal> or
<literal>PUT</literal>)</para>
</listitem>
<listitem>
<para>The expiry date as a Unix timestamp</para>
</listitem>
<listitem>
<para>The full path to the object</para>
</listitem>
<listitem>
<para>The secret key set as the
<literal>X-Account-Meta-Temp-URL-Key</literal></para>
</listitem>
</itemizedlist>
<para>Here is code generating the signature for a GET for 24
hours on
<code>/v1/AUTH_account/container/object</code>:</para>
<programlisting language="python">import hmac
from hashlib import sha1
from time import time
method = 'GET'
duration_in_seconds = 60*60*24
expires = int(time() + duration_in_seconds)
path = '/v1/AUTH_a422b2-91f3-2f46-74b7-d7c9e8958f5d30/container/object'
key = 'mykey'
hmac_body = '%s\n%s\n%s' % (method, expires, path)
sig = hmac.new(key, hmac_body, sha1).hexdigest()
s = 'https://{host}/{path}?temp_url_sig={sig}&amp;temp_url_expires={expires}'
url = s.format(host='swift-cluster.example.com', path=path, sig=sig, expires=expires)</programlisting>
<para>Any alteration of the resource path or query arguments
results in a <errorcode>401</errorcode>
<errortext>Unauthorized</errortext> error. Similarly, a
PUT where GET was the allowed method returns a
<errorcode>401</errorcode>. HEAD is allowed if GET or
PUT is allowed. Using this in combination with browser
form post translation middleware could also allow
direct-from-browser uploads to specific locations in
Object Storage.</para>
<note>
<para>Changing the
<literal>X-Account-Meta-Temp-URL-Key</literal>
invalidates any previously generated temporary
URLs within 60 seconds (the memcache time for the
key). Object Storage supports up to two keys, specified by
<literal>X-Account-Meta-Temp-URL-Key</literal>
and
<literal>X-Account-Meta-Temp-URL-Key-2</literal>.
Signatures are checked against both keys, if
present. This is to allow for key rotation without
invalidating all existing temporary URLs.</para>
</note>
<para>Object Storage includes a script called
<command>swift-temp-url</command> that generates the
query parameters automatically:</para>
<screen><prompt>$</prompt> <userinput>bin/swift-temp-url GET 3600 /v1/AUTH_account/container/object mykey</userinput>
<computeroutput>/v1/AUTH_account/container/object?
temp_url_sig=5c4cc8886f36a9d0919d708ade98bf0cc71c9e91&amp;
temp_url_expires=1374497657</computeroutput></screen>
<para>Because this command only returns the path, you must
prefix the Object Storage host name (for example,
<literal>https://swift-cluster.example.com</literal>).</para>
<para>With GET Temporary URLs, a
<literal>Content-Disposition</literal> header is set
on the response so that browsers interpret this as a file
attachment to be saved. The file name chosen is based on
the object name, but you can override this with a
<literal>filename</literal> query parameter. The
following example specifies a filename of <filename>My
Test File.pdf</filename>:</para>
<programlisting>https://swift-cluster.example.com/v1/AUTH_a422b2-91f3-2f46-74b7-d7c9e8958f5d30/container/object?
temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709&amp;
temp_url_expires=1323479485&amp;
filename=My+Test+File.pdf</programlisting>
<para>To enable Temporary URL functionality, edit
<filename>/etc/swift/proxy-server.conf</filename> to
add <literal>tempurl</literal> to the
<literal>pipeline</literal> variable defined in the
<literal>[pipeline:main]</literal> section. The
<literal>tempurl</literal> entry should appear
immediately before the authentication filters in the
pipeline, such as <literal>authtoken</literal>,
<literal>tempauth</literal> or
<literal>keystoneauth</literal>. For
example:<programlisting>[pipeline:main]
pipeline = pipeline = healthcheck cache <emphasis role="bold">tempurl</emphasis> authtoken keystoneauth proxy-server</programlisting></para>
<xi:include
href="../../common/tables/swift-proxy-server-filter-tempurl.xml"
/>
</section>
<section xml:id="object-storage-name-check">
<title>Name check filter</title>
<para>Name Check is a filter that disallows any paths that
contain defined forbidden characters or that exceed a
defined length.</para>
<xi:include
href="../../common/tables/swift-proxy-server-filter-name_check.xml"
/>
</section>
<section xml:id="object-storage-constraints">
<title>Constraints</title>
<para>To change the OpenStack Object Storage internal limits,
update the values in the
<literal>swift-constraints</literal> section in the
<filename>swift.conf</filename> file. Use caution when
you update these values because they affect the
performance in the entire cluster.</para>
<xi:include
href="../../common/tables/swift-swift-swift-constraints.xml"
/>
</section>
<section xml:id="object-storage-dispersion">
<title>Cluster health</title>
<para>Use the <command>swift-dispersion-report</command> tool
to measure overall cluster health. This tool checks if a
set of deliberately distributed containers and objects are
currently in their proper places within the cluster. For
instance, a common deployment has three replicas of each
object. The health of that object can be measured by
checking if each replica is in its proper place. If only 2
of the 3 is in place the objects health can be said to be
at 66.66%, where 100% would be perfect. A single objects
health, especially an older object, usually reflects the
health of that entire partition the object is in. If you
make enough objects on a distinct percentage of the
partitions in the cluster,you get a good estimate of the
overall cluster health. In practice, about 1% partition
coverage seems to balance well between accuracy and the
amount of time it takes to gather results. The first thing
that needs to be done to provide this health value is
create a new account solely for this usage. Next, you need
to place the containers and objects throughout the system
so that they are on distinct partitions. The
<command>swift-dispersion-populate</command> tool does this
by making up
random container and object names until they fall on
distinct partitions. Last, and repeatedly for the life of
the cluster, you must run the
<command>swift-dispersion-report</command> tool to
check the health of each of these containers and objects.
These tools need direct access to the entire cluster and
to the ring files (installing them on a proxy server
suffices). The
<command>swift-dispersion-populate</command> and
<command>swift-dispersion-report</command> commands
both use the same configuration file,
<filename>/etc/swift/dispersion.conf</filename>.
Example <filename>dispersion.conf</filename> file:</para>
<programlisting language="ini">
[dispersion]
auth_url = http://localhost:8080/auth/v1.0
auth_user = test:tester
auth_key = testing
</programlisting>
<para>There are also configuration options for specifying the
dispersion coverage, which defaults to 1%, retries,
concurrency, and so on. However, the defaults are usually
fine. Once the configuration is in place, run
<command>swift-dispersion-populate</command> to
populate the containers and objects throughout the
cluster. Now that those containers and objects are in
place, you can run
<command>swift-dispersion-report</command> to get a
dispersion report, or the overall health of the cluster.
Here is an example of a cluster in perfect health:</para>
<screen><prompt>$</prompt> <userinput>swift-dispersion-report</userinput>
<computeroutput>Queried 2621 containers for dispersion reporting, 19s, 0 retries
100.00% of container copies found (7863 of 7863)
Sample represents 1.00% of the container partition space
Queried 2619 objects for dispersion reporting, 7s, 0 retries
100.00% of object copies found (7857 of 7857)
Sample represents 1.00% of the object partition space
</computeroutput></screen>
<para>Now, deliberately double the weight of a device in the
object ring (with replication turned off) and re-run the
dispersion report to show what impact that has:</para>
<screen><prompt>$</prompt> <userinput>swift-ring-builder object.builder set_weight d0 200</userinput>
<prompt>$</prompt> <userinput>swift-ring-builder object.builder rebalance</userinput>
...
<prompt>$</prompt> <userinput>swift-dispersion-report</userinput>
<computeroutput>Queried 2621 containers for dispersion reporting, 8s, 0 retries
100.00% of container copies found (7863 of 7863)
Sample represents 1.00% of the container partition space
Queried 2619 objects for dispersion reporting, 7s, 0 retries
There were 1763 partitions missing one copy.
77.56% of object copies found (6094 of 7857)
Sample represents 1.00% of the object partition space
</computeroutput></screen>
<para>You can see the health of the objects in the cluster has
gone down significantly. Of course, this test environment
has just four devices, in a production environment with
many devices the impact of one device change is much less.
Next, run the replicators to get everything put back into
place and then rerun the dispersion report:</para>
<programlisting>
... start object replicators and monitor logs until they're caught up ...
$ swift-dispersion-report
Queried 2621 containers for dispersion reporting, 17s, 0 retries
100.00% of container copies found (7863 of 7863)
Sample represents 1.00% of the container partition space
Queried 2619 objects for dispersion reporting, 7s, 0 retries
100.00% of object copies found (7857 of 7857)
Sample represents 1.00% of the object partition space
</programlisting>
<para>Alternatively, the dispersion report can also be output
in json format. This allows it to be more easily consumed
by third-party utilities:</para>
<screen><prompt>$</prompt> <userinput>swift-dispersion-report -j</userinput>
<computeroutput>{"object": {"retries:": 0, "missing_two": 0, "copies_found": 7863, "missing_one": 0,
"copies_expected": 7863, "pct_found": 100.0, "overlapping": 0, "missing_all": 0}, "container":
{"retries:": 0, "missing_two": 0, "copies_found": 12534, "missing_one": 0, "copies_expected":
12534, "pct_found": 100.0, "overlapping": 15, "missing_all": 0}}</computeroutput></screen>
<xi:include
href="../../common/tables/swift-dispersion-dispersion.xml"
/>
</section>
<section xml:id="object-storage-slo">
<!-- Usage documented in http://docs.openstack.org/developer/swift/overview_large_objects.html -->
<title>Static Large Object (SLO) support</title>
<para>This feature is very similar to Dynamic Large Object
(DLO) support in that it enables the user to upload many
objects concurrently and afterwards download them as a
single object. It is different in that it does not rely on
eventually consistent container listings to do so.
Instead, a user-defined manifest of the object segments is
used.</para>
<xi:include
href="../../common/tables/swift-proxy-server-filter-slo.xml"
/>
</section>
<section xml:id="object-storage-container-quotas">
<title>Container quotas</title>
<para>The <code>container_quotas</code> middleware implements simple quotas that can be
imposed on Object Storage containers by a user with the ability to set container
metadata, most likely the account administrator. This can be useful for limiting the
scope of containers that are delegated to non-admin users, exposed to formpost uploads,
or just as a self-imposed sanity check.</para>
<para>Any object PUT operations that exceed these quotas
return a 413 response (request entity too large) with a
descriptive body.</para>
<para>Quotas are subject to several limitations: eventual
consistency, the timeliness of the cached container_info
(60 second ttl by default), and it is unable to reject
chunked transfer uploads that exceed the quota (though
once the quota is exceeded, new chunked transfers are
refused).</para>
<para>Set quotas by adding meta values to the container. These
values are validated when you set them:</para>
<itemizedlist>
<listitem>
<para>X-Container-Meta-Quota-Bytes: Maximum size of
the container, in bytes.</para>
</listitem>
<listitem>
<para>X-Container-Meta-Quota-Count: Maximum object
count of the container.</para>
</listitem>
</itemizedlist>
<xi:include
href="../../common/tables/swift-proxy-server-filter-container-quotas.xml"
/>
</section>
<section xml:id="object-storage-account-quotas">
<title>Account quotas</title>
<para>The <parameter>x-account-meta-quota-bytes</parameter>
metadata entry must be requests (PUT, POST) if a given
account quota (in bytes) is exceeded while DELETE requests
are still allowed.</para>
<para>The <parameter>x-account-meta-quota-bytes</parameter>
metadata entry must be
set to store and enable the quota. Write requests to this
metadata entry are only permitted for resellers. There is
no account quota limitation on a reseller account even if
<parameter>x-account-meta-quota-bytes</parameter> is set.
</para>
<para>Any object PUT operations that exceed the quota return a
413 response (request entity too large) with a descriptive
body.</para>
<para>The following command uses an admin account that own the
Reseller role to set a quota on the test account:</para>
<screen><prompt>$</prompt> <userinput>swift -A http://127.0.0.1:8080/auth/v1.0 -U admin:admin -K admin \
--os-storage-url=http://127.0.0.1:8080/v1/AUTH_test post -m quota-bytes:10000</userinput></screen>
<para>Here is the stat listing of an account where quota has
been set:</para>
<screen><prompt>$</prompt> <userinput>swift -A http://127.0.0.1:8080/auth/v1.0 -U test:tester -K testing stat</userinput>
<computeroutput>Account: AUTH_test
Containers: 0
Objects: 0
Bytes: 0
Meta Quota-Bytes: 10000
X-Timestamp: 1374075958.37454
X-Trans-Id: tx602634cf478546a39b1be-0051e6bc7a</computeroutput></screen>
<para>This command removes the account quota:</para>
<screen><prompt>$</prompt> <userinput>swift -A http://127.0.0.1:8080/auth/v1.0 -U admin:admin -K admin --os-storage-url=http://127.0.0.1:8080/v1/AUTH_test post -m quota-bytes:</userinput></screen>
</section>
<section xml:id="object-storage-bulk-delete">
<title>Bulk delete</title>
<para>Use <code>bulk-delete</code> to delete multiple files
from an account
with a single request. Responds to DELETE requests with a
header 'X-Bulk-Delete: true_value'. The body of the DELETE
request is a new line-separated list of files to delete.
The files listed must be URL encoded and in the
form:</para>
<programlisting>
/container_name/obj_name
</programlisting>
<para>If all files are successfully deleted (or did not
exist), the operation returns <code>HTTPOk</code>. If any
files failed to delete, the operation returns
<code>HTTPBadGateway</code>. In both cases, the response body
is a JSON dictionary that shows the number of files that were
successfully deleted or not found. The files that failed are
listed.</para>
<xi:include
href="../../common/tables/swift-proxy-server-filter-bulk.xml"
/>
</section>
<xi:include href="section_configure_s3.xml"/>
<section xml:id="object-storage-drive-audit">
<title>Drive audit</title>
<para>The <option>swift-drive-audit</option> configuration
items reference a script that can be run by using
<command>cron</command> to watch for bad drives. If
errors are detected, it unmounts the bad drive, so that
OpenStack Object Storage can work around it. It takes the
following options:</para>
<xi:include
href="../../common/tables/swift-drive-audit-drive-audit.xml"
/>
</section>
<section xml:id="object-storage-form-post">
<title>Form post</title>
<para>Middleware that provides the ability to upload objects
to a cluster using an HTML form POST. The format of the
form is:</para>
<programlisting>&lt;![CDATA[
&lt;form action="&lt;swift-url&gt;" method="POST"
enctype="multipart/form-data"&gt;
&lt;input type="hidden" name="redirect" value="&lt;redirect-url&gt;" /&gt;
&lt;input type="hidden" name="max_file_size" value="&lt;bytes&gt;" /&gt;
&lt;input type="hidden" name="max_file_count" value="&lt;count&gt;" /&gt;
&lt;input type="hidden" name="expires" value="&lt;unix-timestamp&gt;" /&gt;
&lt;input type="hidden" name="signature" value="&lt;hmac&gt;" /&gt;
&lt;input type="file" name="file1" /&gt;&lt;br /&gt;
&lt;input type="submit" /&gt;
&lt;/form&gt;]]&gt;
</programlisting>
<para>The <literal>swift-url</literal> is the URL to the Object Storage destination, such
as: <uri>https://swift-cluster.example.com/v1/AUTH_account/container/object_prefix</uri>
The name of each file uploaded is appended to the specified
<literal>swift-url</literal>. So, you can upload directly to the root of container with
a URL like: <uri>https://swift-cluster.example.com/v1/AUTH_account/container/</uri>
Optionally, you can include an object prefix to better separate different users
uploads, such as:
<uri>https://swift-cluster.example.com/v1/AUTH_account/container/object_prefix</uri>
</para>
<note>
<para>The form method must be POST and the enctype must be
set as <literal>multipart/form-data</literal>.</para>
</note>
<para>The redirect attribute is the URL to redirect the
browser to after the upload completes. The URL has status
and message query parameters added to it, indicating the
HTTP status code for the upload (2xx is success) and a
possible message for further information if there was an
error (such as <literal>“max_file_size
exceeded”</literal>).</para>
<para>The <literal>max_file_size</literal> attribute must be
included and indicates the largest single file upload that
can be done, in bytes.</para>
<para>The <literal>max_file_count</literal> attribute must be
included and indicates the maximum number of files that
can be uploaded with the form. Include additional
<code>&lt;![CDATA[&lt;input type="file"
name="filexx"/&gt;]]&gt;</code> attributes if
desired.</para>
<para>The expires attribute is the Unix timestamp before which
the form must be submitted before it is
invalidated.</para>
<para>The signature attribute is the HMAC-SHA1 signature of
the form. This sample Python code shows how to compute the
signature:</para>
<programlisting language="python">
import hmac
from hashlib import sha1
from time import time
path = '/v1/account/container/object_prefix'
redirect = 'https://myserver.com/some-page'
max_file_size = 104857600
max_file_count = 10
expires = int(time() + 600)
key = 'mykey'
hmac_body = '%s\n%s\n%s\n%s\n%s' % (path, redirect,
max_file_size, max_file_count, expires)
signature = hmac.new(key, hmac_body, sha1).hexdigest()
</programlisting>
<para>The key is the value of the
<literal>X-Account-Meta-Temp-URL-Key</literal> header
on the account.</para>
<para>Be certain to use the full path, from the
<literal>/v1/</literal> onward.</para>
<para>The command-line tool
<command>swift-form-signature</command> may be used
(mostly just when testing) to compute expires and
signature.</para>
<para>The file attributes must appear after the other
attributes to be processed correctly. If attributes come
after the file, they are not sent with the sub-request
because on the server side, all attributes in the file
cannot be parsed unless the whole file is read into memory
and the server does not have enough memory to service
these requests. So, attributes that follow the file are
ignored.</para>
<xi:include
href="../../common/tables/swift-proxy-server-filter-formpost.xml"
/>
</section>
<section xml:id="object-storage-static-web">
<title>Static web sites</title>
<para>When configured, this middleware serves container data
as a static web site with index file and error file
resolution and optional file listings. This mode is
normally only active for anonymous requests.</para>
<xi:include
href="../../common/tables/swift-proxy-server-filter-staticweb.xml"
/>
</section>
<xi:include href="section_object-storage-cors.xml"/>
<xi:include href="section_object-storage-listendpoints.xml"/>
</section>