# -*- encoding: utf-8 -*- # # Copyright © 2013 Red Hat, Inc # # Author: Eoghan Glynn # Author: Mehdi Abaakouk # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime import operator from ceilometer.alarm import evaluator from ceilometer.alarm.evaluator import OK, ALARM, UNKNOWN from ceilometer.openstack.common.gettextutils import _ from ceilometer.openstack.common import log from ceilometer.openstack.common import timeutils LOG = log.getLogger(__name__) COMPARATORS = { 'gt': operator.gt, 'lt': operator.lt, 'ge': operator.ge, 'le': operator.le, 'eq': operator.eq, 'ne': operator.ne, } class ThresholdEvaluator(evaluator.Evaluator): # the sliding evaluation window is extended to allow # for reporting/ingestion lag look_back = 1 # minimum number of datapoints within sliding window to # avoid unknown state quorum = 1 @classmethod def _bound_duration(cls, alarm, constraints): """Bound the duration of the statistics query.""" now = timeutils.utcnow() window = (alarm.rule['period'] * (alarm.rule['evaluation_periods'] + cls.look_back)) start = now - datetime.timedelta(seconds=window) LOG.debug(_('query stats from %(start)s to ' '%(now)s') % {'start': start, 'now': now}) after = dict(field='timestamp', op='ge', value=start.isoformat()) before = dict(field='timestamp', op='le', value=now.isoformat()) constraints.extend([before, after]) return constraints @staticmethod def _sanitize(alarm, statistics): """Sanitize statistics. Ultimately this will be the hook for the exclusion of chaotic datapoints for example. """ LOG.debug(_('sanitize stats %s') % statistics) # in practice statistics are always sorted by period start, not # strictly required by the API though statistics = statistics[:alarm.rule['evaluation_periods']] LOG.debug(_('pruned statistics to %d') % len(statistics)) return statistics def _statistics(self, alarm, query): """Retrieve statistics over the current window.""" LOG.debug(_('stats query %s') % query) try: return self._client.statistics.list( meter_name=alarm.rule['meter_name'], q=query, period=alarm.rule['period']) except Exception: LOG.exception(_('alarm stats retrieval failed')) return [] def _sufficient(self, alarm, statistics): """Ensure there is sufficient data for evaluation, transitioning to unknown otherwise. """ sufficient = len(statistics) >= self.quorum if not sufficient and alarm.state != UNKNOWN: reason = _('%d datapoints are unknown') % alarm.rule[ 'evaluation_periods'] self._refresh(alarm, UNKNOWN, reason) return sufficient @staticmethod def _reason(alarm, statistics, distilled, state): """Fabricate reason string.""" count = len(statistics) disposition = 'inside' if state == OK else 'outside' last = getattr(statistics[-1], alarm.rule['statistic']) transition = alarm.state != state if transition: return (_('Transition to %(state)s due to %(count)d samples' ' %(disposition)s threshold, most recent: %(last)s') % {'state': state, 'count': count, 'disposition': disposition, 'last': last}) return (_('Remaining as %(state)s due to %(count)d samples' ' %(disposition)s threshold, most recent: %(last)s') % {'state': state, 'count': count, 'disposition': disposition, 'last': last}) def _transition(self, alarm, statistics, compared): """Transition alarm state if necessary. The transition rules are currently hardcoded as: - transitioning from a known state requires an unequivocal set of datapoints - transitioning from unknown is on the basis of the most recent datapoint if equivocal Ultimately this will be policy-driven. """ distilled = all(compared) unequivocal = distilled or not any(compared) unknown = alarm.state == UNKNOWN continuous = alarm.repeat_actions if unequivocal: state = ALARM if distilled else OK reason = self._reason(alarm, statistics, distilled, state) if alarm.state != state or continuous: self._refresh(alarm, state, reason) elif unknown or continuous: trending_state = ALARM if compared[-1] else OK state = trending_state if unknown else alarm.state reason = self._reason(alarm, statistics, distilled, state) self._refresh(alarm, state, reason) def evaluate(self, alarm): query = self._bound_duration( alarm, alarm.rule['query'] ) statistics = self._sanitize( alarm, self._statistics(alarm, query) ) if self._sufficient(alarm, statistics): def _compare(stat): op = COMPARATORS[alarm.rule['comparison_operator']] value = getattr(stat, alarm.rule['statistic']) limit = alarm.rule['threshold'] LOG.debug(_('comparing value %(value)s against threshold' ' %(limit)s') % {'value': value, 'limit': limit}) return op(value, limit) self._transition(alarm, statistics, map(_compare, statistics))