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Abstract

Sensor nodes that store their data locally are increashejhg
deployed in hostile and remote environments such as aabieav
noes and battlefields. Observations gathered in theseoenvimts
are often irreplaceable, and must be protected from lossoduede
failures. Nodes may fail individually due to power depletior
hardware/software problems, or they may suffer correléaiares
from localized destructive events such as fire or rockfallhile/
many file systems can guard against these events, they domot ¢
sider energy usage in their approach to redundancy. We egami
tradeoffs between energy and reliability in three contestt®ice of
redundancy technique, choice of redundancy nodes, andeney
of verifying correctness of remotely-stored data. By metghhe
choice of reliability techniques to the failure characticis of sen-
sor networks in hostile and inaccessible environments,amebaild
systems that use less energy while providing higher systéiabil-

ity.
Categories and Subject Descriptors
D.4.5 [Reliability]: Backup Procedures, Fault-tolerancBis-

tributed File SystemsC.4 [Performance of Systemp Fault toler-
ance

General Terms
energy-reliability tradeoffs

Keywords

energy, reliability, sensor network storage

1 Introduction

The availability of inexpensive gigabyte-scale local ag® on
sensor nodes [13] and the high cost of radio operationsiveltd
storage operations are enabling sensor nodes that sterédally
in between data collection events [12]. Storage-basedsenes-
works are used to monitor volcanoes, battlefields, habisaismic
events, traffic, and the stability and integrity of engimekstruc-
tures such as buildings and bridges [2, 20]. However, tHedity
of gathering data from sensor nodes in hostile and inaddessn-
vironments has also made it harder to deploy base statiahgath
cumulate nodes’ data. Base stations installed with seretaranks
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Figure 1. Sensor network on a volcanic lava flow. Nodes 1-6
have been destroyed by the flow.

are easily detected in contested land areas such as baxddrare
an obvious target for network disruption. Base stationsnaci

cessible and natural environments are single points afriaibe-

cause they may suffer from power outages or malfunctionsingu
data loss; in a volcano-based sensor network, “[flailufeb®base
station infrastructure were a significant source of netwaotvn-

time” [20]. Some networks try to avoid this problem by dephgy

multiple base stations or specialized storage nodes [A&jeasing
the both the likelihood of the detection of the network, amelgys-
tem cost. Data loss in centrally-controlled sensor nete/@ kikely

to be more severe because nodes do not retain the obsesvidiyn
have already uploaded to the base station. Moreover, a tstgmns
cannot easily transmit data to a receiver when none is neashig

often the case in remote environments. Such environmeetsedr
ter suited to occasional data collection, requiring node=liably

maintain their data over long periods of time.

Individual sensor nodes typically suffer from relativelglhfail-
ure rates, as compared to traditional storage devices. dvere
sensor nodes are more likely to sufiesrrelated failures due to
environmental dangers. Individual failures may be causetat-
tery depletion, hardware or software errors, or physicahaize.
In contrast, correlated node failures may be caused byriagge
physical damage caused by a destructive event such as fambd, r
fall, or fire; for example, the lava flow in Figure 1 has oblétd
nodes 1-6. Unfortunately, the latest data from destroyetbsi@s
the most valuable because it may record details of the eveking
it even more important for the observations gathered by tues
to survive their destruction. However, it is also imperatikiat sen-
sor nodes create and maintain back-up copies of their daeuti
overwhelming their energy budgets.

We discuss the tradeoffs between energy and reliabilitgissr
networks that store data for long periods of time: weeks t&rge
These tradeoffs can be made in three separate areas: redynda
technigues, choice of nodes which store the redundantataddre-



quency of integrity checks on the remotely stored redundats.
We do not expect the energy expenditure of reliable storagen-
sor networks to be less than the energy expended by nodelamiup
their data to a base station; rather, our goal is to make seto
work storage much more reliable by increasing the likelthttmat
sensor data survive despite individual and correlated faitiges.
By providing energy-efficient storage operations, senstwarks
can more easily provide raw data, instead of aggregatedegmd-r
sentative values, to their intended audience, potentiadijitating
more robust forecast and analysis models.

We assume that the network is comprised of sensor nodes
severely constrained in power, storage, and processin@gldbes-
sume that nodes have limited radio range, so communicatitn w
distant nodes requires multi-hop routing. Since our rete#s
primarily concerned with energy-reliability tradeoffsgviold the
costs for interference and retransmission into the codrémsmit-
ting data between nodes. We assume that each node has g-batter
backed RAM for buffering data and NAND flash memory for per-
sistent storage [12], though new non-volatile memory tetdgies
such as phase change memories may further simplify thetacehi
ture [9].

2 Issues in Reliability

Analyzing tradeoffs between energy usage and file systdaa rel
bility depends on making good choices for redundancy teples,
nodes for remote storage, and frequency of checking inyegfi
redundant data, while considering the high failure rateesfssr
nodes and the likelihood of occurrence of correlated faduf4].

2.1 Redundancy Techniques

As with traditional file systems, sensor nodes may use either
mirroring or erasure coding to store data reliably. Trarssion
costs dominate energy usage when mirroring is used becaunse t
mitting data costs two hundred times more energy [12] tharirgf
the same amount of data locally. As a result, due to the velati
position of nodes and the base station, the transmissidrotosr-
roring data to another node may be lower than that of upl@adin
data to a base station. This is specifically the case whenadhe-t
mitting node is in the center of the network and the baseostasi
installed at the edge of the network, or vice versa. For exanp
Figure 1, node 6 will have to transmit its data over five hophef
base station was installed near node 11. The storage odediea
mirroring is also very high: tolerating failures requires the sys-
tem to storen+ 1 copies of the data. In contrast, processing costs
dominate energy usage for erasure codes.

Table 1. Energy Expenditure of Erasure Codes in mJ/s and
Throughput in MB/s.

Code Size|| Energy Expenditure (mJ)| Throughput (MB/s)
RS [ XOR RS [ XOR

(5,3) 3.515| 1.205 2.674| 7.798

(6, 2) 3.133| 0.6 3 15.654

9, 3) 482 | 0.524 195 | 17.953

(10, 2) 3.92 | 0.653 24 14.4

(17,3) 5.193 | 0.588 1.81 | 15.99

(18, 2) 4.36 | 0.589 2.156 | 15.972

XORy — 0.74 — 12.76

XOR, — 0.75 — 12.72

Figure 2. Node 2 replicates its data on nodes 3—7 but is more
likely to suffer data loss even from a small destructive even

closely-located sensor nodes may be observing similargrhena.

In order to tolerate correlated failures, closely-locatedsor nodes
must spread their information over a large physical areze &

ergy expenditure of XORand XOR schemes is comparable to
most XOR-based codes but better than that for RS codes. We are
currently exploring the suitability of several less pramsinten-

sive XOR-based codes, based on the research done by Wylie and
Swaminathan [21], to sensor networks.

2.2 Node Choice

The impact of correlated failures caused by localized damag
can be mitigated by spreading redundant data over a largaqathy
area. There is a cost in energy to send the data further avaay. F
example, observations from node 2 in Figure 2 will be losspite

We compared the performance (energy consumption expressedeplicating them on nodes 3—7, if a tree rooted near nodel fal
in mJ and throughput expressed in MB/s) of encoding usingiRee Data from node 2 is more likely to survive if node 2 sends its.da
Solomon (RS) codes [15] based on G¥(25] to XOR-based nodes(3,8,12 16,20) for redundant storage, as shown in Figure 3.
codes [6, 21] on an ARMYE 400 MHz processor that consumes Nodes(8,12,16,20) are well-spread out; and so are less likely to
94 mJ/s [1]. The first column in Table 1 represents the RS code fail simultaneously. Even though the number of nodes in riisle

implementation for parametef$, m), wheren is the number of
data nodes, andh is the number of parity nodes. RS codes were
implemented as table lookups, where each multiplicatiguires

two lookups. Each lookup table is 256 bytes in size, consgmin
512 bytes of memory. The second column in Table 1 represents
the most fault-tolerant XOR-based codes for the same paease
These codes have the storage efficiencg/gh+ m). The last two
rows present the performance of highly fault-tolerate Xtded
codes that we developed. The X@BRode we designed is an in-
stance of a WEAVER code [6] that tolerates two-node failures

redundancy group is the same in both examples, the lattenszh
is more reliable but also more expensive both for node 2 and it
neighboring nodes because multi-hop transmissions consumne
energy.

Mirroring alone is energy-consuming for making sensor net-
work storage reliable. In order to reduce energy experglitiir
may be better to mirror data only to nearby nodes and to use era
sure codes for nodes that are further away. This approach can
quickly replicate data nearby, guarding against indivichoale fail-
ure, and can use widespread replication to protect againslated

Reed-Solomon codes consume 3-10 times more energy thamode failures. For example, in Figure 3, node 2 can mirroa tiat

XOR-based codes due to more complex finite field calculaf@hs
but provide higher reliability€.g, a(5,3) RS code can toleratl
three-node failures but an XOR-bagé&d3) code may only be able
to tolerate amostthree-node failures). However, it may be possi-
ble to tolerate some node failures without losing data bezaery

node 3 to safeguard against its own failure, but use erasutesc
with nodes(8,12 16,20) to safeguard against correlated failures.
Systems such as OceanStore [16] use erasure codes toaakdrat
atively large numbers of failed nodes; we plan to do the same f
making sensor network storage reliable. Our file system has t



Table 2. MTTDL, in hours, for Mirror 4, XOR; and XOR»
schemes with and without repair.

Mirror 4 XOR, XOR>
MTTDL with repair | 4.87x 101 | 2.42x10° | 6.50x 108
MTTDL w/o repair | 4932 1692 2772

its own data andD @ E; node D stores its own data aAdpb E; and
node E stores its own data aAdp B. In the XOR, scheme, each
node stores its own data and data from four other nodes as two-
Figure 3. Node 2 replicates its data on node&3,8,12,16,20) to gggeD g%ssbdzoé 3(3?5 :te:; gﬁg%g;gﬁ&iﬁﬂ%@i?ﬁ
increase its likelihood of surviving large destructive evats. stores its own data amie E andB b D: node D stores its own data
andA® C andB@ E; and node E stores its own data afeb B
9 9 @ ﬁ . andC®D. The storage overhead of Mirgpis four times that of
# wﬁ the original data set. The storage overhead of X@Rd XOR
% schemes is, respectively, two and three times the origiat det.
* % Figure 6 shows that XORdelivers availability similar to Mirray,

# @ but at a lower overhead. Mirrgrcan tolerate at most four node
@ # (_@ failures, while XOR and XOR, schemes can, respectively, tolerate
e at most two- and three-node failures. Markov models progioted
% o % approximate analysis, but do not work well for “irregularOR
codes or for systems that experience correlated failuheset are

% % better suited to simulation.

The availability of a node’s data when MirgrXOR;, and

Figure 4. Nodes(2,5,6,8,9,10,15,17) form an 8-node redun- XOR; schemes are used to create redundancy in the sensor network
dancy group such that the network can tolerate the failure of are given by:
3-node combinations such ag5,10,17) and (2,6, 10).
. p°

Mirrory =1 T+pp’
advantage of using less-expensive XOR-based codes in pface 10024 5p+1
RS codes by carefully placing redundant data on particuddes. XOR1 = T and
When using a(5,3) XOR-based code, by arranging data so that (P+1)
the “fatal” three-node sets cover a large physical areasémsor XOR» — 1— 50+1
network can gain nearly all benefits of RS codes with the cdazpu 2= (p+1)5

tional cost of XOR-based codes. For example, node 2 in Figure

might choose node®,5,6,8,9,10,15,17) in its eight-node redun- These availability models are simple and assume that thesmody
dancy group. If only three-node combinations, suct{540,17) be repaired. In the case of no repair, steady-state doesisoted
and(2,6,9), caused data loss, then the system would be relatively so the system must be modeled using differential equatibhese
safe since these node-sets cover a widespread area, aefbteer ~ equations quickly become unmanagable, and so a betteiosoisit

are less likely to suffer correlated failures simultandypuBhe sys- to use simulation, which has the additional advantage ofghable
tem could provide additional reliability by choosing sonegydis- to model correlated failures.

tant nodes as part of its redundancy group, perhaps reglaoite 5 Modeling mean-time-to-data-loss (MTTDL) is easier, andsus
with node 19 and node 6 with node 12. the same transition matrix that would be used for modelinti wi

We use a simple Markov model to analyze the availability of differential equations. We assume that both failures apélire are
the Mirrors, XORy, and XOR schemes. Figure 5, depicts 4-way exponentially distributed. We solve all these models byding a
mirroring, but can easily be generalized toranode redundancy  transition matrixM, as discussed by Schwarz [17], and computing
group. The transitions are exponentially distributed wiiian fail- 1
ure rateh, and mean repair raje For simplicity, we letp = A/ MTTDL=-[111,...,1]-M™"-[1,0,0,...,0].

StaItr(13 (tgg(zjelgrziﬁgtri(tehee;?kller?ozt: tset-ores its own data and the XOR Table 2 presents the MTTDL for Mirrgr XOR,, and XOR
L ’ IS ow schemes, with and without repairs. For this example we assbat

of data from two other nodes. For example, node A stores its ow : . :
. . Do nodes are organized into five-node redundancy groups araseho
data and®C; node B stores its own data aBdb D; node C stores p = 5.56x 103, which assumes that failures occur on average ev-

4\ 3A 2\ A ery 3 months and nodes are repaired, on average, in 12 hours.

2.3 Frequency of Integrity Checks
Regardless of the technique used to generate redundarty, ea

sensor node must periodically check to ensure that its bpakata

is still being stored correctly. If a node replicates itsadtd dis-
tant nodes, then its integrity checks and their responses atso
travel further, thereby expending more energy. Moreover,ore

) ) frequently a node checks the correctness of its back-upantire
Figure 5. Markov model of a 5-node redundancy group depict-  energy it expends. Furthermore, additional energy is edgerat

ing Mirror 4. the responding node which must generate a signature arshiitan
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Figure 6. Data availability.

it back over multiple hops. However, in a system where node fa
ure is frequent, it is necessary to detect small problemsrbahey
grow bigger and cause data loss. It may be energy-wise tw allo
small problems to become a little bigger, but not fatal, beeahe
energy cost to restore redundancy is sub-linear. We arerlyrex-
ploring the energy tradeoffs between more frequent integhiecks
with that of the overall reliability of the system.

We plan to use algebraic signatures [18] to verify the caness
of remotely-stored redundant data. Although algebraioatigres
are not cryptographically secure, they change in respansmall
changes in the data from which they are generated. Moreibwsr,

hello
ack
chunk 1
chunk 2
ack chunk 1

chunkn
ack chunk n-k
-

Figure 7. An originating node, S, uses this protocol to replicate
its data to another node,D.

sages, wheren < n. Each back-up node spends energy receiving

a “hello” message and sending an “ack” message. Each origina
ing node uses time stamps and message sequence numbers to kee
track of what data has already been received and backedsp co
rectly by the back-up nodes. By doing this, if the connectien
tween two communicating nodes is lost, the transmittingenoeh

avoid unnecessary retransmissions. An originating nodedspen-

ergy in transmitting data to each back-up node, while eack-bp

node spends energy in receiving and storing back-up dataflash
memory.

4 Optimizations
We are currently researching several optimizations thatedp

can be used in conjunction with XOR or RS codes to ensure that areduce energy requirements for making sensor networkge:aedi-

set of returned signatures is consistent. An algebraicasige op-
eration requires a node to calculate a function on its owoepa
stored redundant data, thereby, generating a small (4-€3 signa-
ture. When combined, these signatures obey the same relaijio
as the data from which they were generated; if the signafores

able. For example, it may be possible to piggy-back integtieck
messages and responses on other network traffic such ae”hell
or “ack” messages or on other traffic related to updatingimgut
and neighborhood tables. Such piggy-backing has the palteft
reducing transmission cost because integrity check messag

a valid code word in the XOR or RS scheme, the underlying data relatively small and the marginal cost of including addiabinfor-

is highly likely to be consistent as well—the chance of agreet
with an underlying error is approximately 2 for a b-bit signature.

3 Experimental Approach

mation in another message is minimal. In order to reduceggner
expenditure of reliability, some redundancy can be gegadrat re-
mote nodes to reduce the total volume of data that must be-tran
mitted over large distances. Sending all data to a remote and

We have developed a cost model to compute the total energy ex-letting it distribute it to its nearby neighbors may also berenen-

penditure of making sensor network storage reliable. Tdia &n-
ergy expenditure is comprised of I/O, processing, and radgts,
and includes the energy expended at the originating nodeelis w
as at each node that stores redundancy data. We also ewdleate
storage overhead of mirroring, erasure coding, and of spomd-

ergy efficient than the originating node distributing itsadéo all
nodes. For example, in Figure 3, node 2 can transmit its data t
node 10, which can distribute the data to nodes 5, 6, and l&rgin
expended in transmission can be further reduced by using sbm
the “routing” nodes or the intermediate nodes in the pativeeh a

ing metadata. Our evaluation assumes that the energy eagbend source node and its destination back-up node.

per-byte to read/write data from SRAM and flash is the same. Th
cost of radio transmission is calculated by multiplying them-
ber of bytes transmitted with the per-byte per-hop energersi-
ture. Radio reception cost is calculated by multiplying miuenber
of bytes received by the per-byte energy expenditure faptan.
Most sensor nodes follow a “write-once, read-never, meddyer”
access policy, therefore, nodes do not need to performrremeal
back-ups: a file once written will not be modified during theles'
deployment. Each node maintains metadata such as theairigin
ing node’s ID, the chunk ID, and the receiving node’s ID. Altigh
it may be sufficient to store this metadata on either the aigng
node or on the receiving node, storing it on the originatinden
as well as each corresponding back-up node will help bacthep
metadata, and prevent it from being a single point of failure

An originating node, ready to back-up its data, sends adhell
message, as shown in Figure 7,ntmodes to check if they have
space to store its data. Back-up nodes that have sufficierstgst
respond with an “ack” message. The originating node spends e
ergy in sendingn “hello” messages and receiving “ack” mes-

5 Related Work

Koushanfar,et al. [8] identify computing, storage, communi-
cation, sensing, and actuating as resources and propokmdpac
up a resource running low with one that is abundantly avkilab
However, the application software that computes resowaitedil-
ity may itself consume lots of energy. The solutions preseiuty
Kamra,et al.[7] and Lin,et al.[10] are designed for sink-based net-
work architectures. Although our solution is applicablétth dis-
tributed and centrally-controlled networks, we assumestiitiuted
network architecture without a sink. Limt al. [11] use decen-
tralized fountain codes to introduce redundancy into thevoek.
Ghose gt al. [4] present a Resilient Data Centric Storage (R-DCS)
scheme to reduce energy consumption while increasingaesd to
node failures. Schemes presented by authors [4, 11] regioen-
plete picture of the network. This may not always be possilile
ad hocnetworks [10]. In contrast, we assume nearly homogeneous
nodes with no single point of failure. This assumption may no
hold well in ad hocnetworks deployed by dropping nodes from an



airplane or artillery shell. Dimakigt al.[3] use decentralized era-

sure codes to reduce latency and unreliability betweenydiraes
and the time at which data reaches the data collector. THmwut

assume a fixed ratio between the number of storage nodesand t

number of nodes that contain original data.

6 Conclusion

“Sense and store” sensor networks are gaining popularigy du [11]

to the recent availability of gigabyte-scale local storagesensor

nodes, and because storage operations are more energgneffici

than radio operations. It is important to make the data dttwe

cally on sensor nodes reliable because sensor nodes suffer f

unusually high failure rates (both individual and corretjt We
discussed three factors that influence energy-relialiiétgteoffs—

redundancy techniques, node choice, and frequency ofrityteg

checks. We presented a simple analytical model for modétiag
availability of a node’s data, and are currently explorihggse is-
sues in more detail using simulation-based models. Ouareke
on energy-reliability tradeoffs will enable long-termieddle stor-

age in sensor nodes and enable their deployment in envimsme

where frequent data collection is infeasible.
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