Tim Burke a4fb70ece1 Compare each chunk of large objects when uploading
Previously, we compared the ETag from Swift against the MD5 of the
entire large object. However, the ETag for large objects is generally
the MD5 of the concatenation of the ETags for each segment, unless the
object is a DLO whose segments span more than one page of a container
listing. Rather than worry about ETags, just compare each chunk of the
segmented file. This allows the use of --skip-identical when uploading
SLOs and DLOs.

Additionally, there are several test-related improvements:
 * The default arguments for OutputManager are now evaluated on
   construction, rather than on definition, so that
   TestOutputManager.test_instantiation will succeed when using nosetest
   as a test runner. (See also: bug 1251507)
 * An account_username option is now available in the functional tests
   config file for auth systems that do not follow the account:username
   format.
 * CaptureOutput no longer writes to the captured stream, and
   MockHttpTest now captures output. These were polluting test output
   unnecessarily. (See also: bug 1201376)

Change-Id: Ic484e9a0c186c9283c4012c6a2fa77b96b8edf8a
Closes-Bug: #1201376
Closes-Bug: #1379252
Related-Bug: #1251507
2015-03-23 18:35:45 -07:00

194 lines
7.4 KiB
Python

# Copyright (c) 2010-2012 OpenStack, LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import six
import sys
from concurrent.futures import ThreadPoolExecutor
from six.moves.queue import PriorityQueue
class OutputManager(object):
"""
One object to manage and provide helper functions for output.
This object is a context manager and returns itself into the context. When
entering the context, two printing threads are created (see below) and they
are waited on and cleaned up when exiting the context.
Also, thread-safe printing to two streams is provided. The
:meth:`print_msg` method will print to the supplied ``print_stream``
(defaults to ``sys.stdout``) and the :meth:`error` method will print to the
supplied ``error_stream`` (defaults to ``sys.stderr``). Both of these
printing methods will format the given string with any supplied ``*args``
(a la printf). On Python 2, Unicode messages are encoded to utf8.
The attribute :attr:`self.error_count` is incremented once per error
message printed, so an application can tell if any worker threads
encountered exceptions or otherwise called :meth:`error` on this instance.
The swift command-line tool uses this to exit non-zero if any error strings
were printed.
"""
DEFAULT_OFFSET = 14
def __init__(self, print_stream=None, error_stream=None):
"""
:param print_stream: The stream to which :meth:`print_msg` sends
formatted messages.
:param error_stream: The stream to which :meth:`error` sends formatted
messages.
On Python 2, Unicode messages are encoded to utf8.
"""
self.print_stream = print_stream or sys.stdout
self.print_pool = ThreadPoolExecutor(max_workers=1)
self.error_stream = error_stream or sys.stderr
self.error_print_pool = ThreadPoolExecutor(max_workers=1)
self.error_count = 0
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.error_print_pool.__exit__(exc_type, exc_value, traceback)
self.print_pool.__exit__(exc_type, exc_value, traceback)
def print_raw(self, data):
self.print_pool.submit(self._write, data, self.print_stream)
def _write(self, data, stream):
if six.PY3:
stream.buffer.write(data)
stream.flush()
if six.PY2:
stream.write(data)
stream.flush()
def print_msg(self, msg, *fmt_args):
if fmt_args:
msg = msg % fmt_args
self.print_pool.submit(self._print, msg)
def print_items(self, items, offset=DEFAULT_OFFSET, skip_missing=False):
template = '%%%ds: %%s' % offset
for k, v in items:
if skip_missing and not v:
continue
self.print_msg((template % (k, v)).rstrip())
def error(self, msg, *fmt_args):
if fmt_args:
msg = msg % fmt_args
self.error_print_pool.submit(self._print_error, msg)
def get_error_count(self):
return self.error_count
def _print(self, item, stream=None):
if stream is None:
stream = self.print_stream
if six.PY2 and isinstance(item, unicode):
item = item.encode('utf8')
print(item, file=stream)
def _print_error(self, item, count=1):
self.error_count += count
return self._print(item, stream=self.error_stream)
def warning(self, msg, *fmt_args):
# print to error stream but do not increment error count
if fmt_args:
msg = msg % fmt_args
self.error_print_pool.submit(self._print_error, msg, count=0)
class MultiThreadingManager(object):
"""
One object to manage context for multi-threading. This should make
bin/swift less error-prone and allow us to test this code.
"""
def __init__(self, create_connection, segment_threads=10,
object_dd_threads=10, object_uu_threads=10,
container_threads=10):
"""
:param segment_threads: The number of threads allocated to segment
uploads
:param object_dd_threads: The number of threads allocated to object
download/delete jobs
:param object_uu_threads: The number of threads allocated to object
upload/update based jobs
:param container_threads: The number of threads allocated to
container/account level jobs
"""
self.segment_pool = ConnectionThreadPoolExecutor(
create_connection, max_workers=segment_threads)
self.object_dd_pool = ConnectionThreadPoolExecutor(
create_connection, max_workers=object_dd_threads)
self.object_uu_pool = ConnectionThreadPoolExecutor(
create_connection, max_workers=object_uu_threads)
self.container_pool = ConnectionThreadPoolExecutor(
create_connection, max_workers=container_threads)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.segment_pool.__exit__(exc_type, exc_value, traceback)
self.object_dd_pool.__exit__(exc_type, exc_value, traceback)
self.object_uu_pool.__exit__(exc_type, exc_value, traceback)
self.container_pool.__exit__(exc_type, exc_value, traceback)
class ConnectionThreadPoolExecutor(ThreadPoolExecutor):
"""
A wrapper class to maintain a pool of connections alongside the thread
pool. We start by creating a priority queue of connections, and each job
submitted takes one of those connections (initialising if necessary) and
passes it as the first arg to the executed function.
At the end of execution that connection is returned to the queue.
By using a PriorityQueue we avoid creating more connections than required.
We will only create as many connections as are required concurrently.
"""
def __init__(self, create_connection, max_workers):
self._connections = PriorityQueue()
self._create_connection = create_connection
for p in range(0, max_workers):
self._connections.put((p, None))
super(ConnectionThreadPoolExecutor, self).__init__(max_workers)
def submit(self, fn, *args, **kwargs):
def conn_fn():
priority = None
conn = None
try:
# If we get a connection we must put it back later
(priority, conn) = self._connections.get()
if conn is None:
conn = self._create_connection()
conn_args = (conn,) + args
return fn(*conn_args, **kwargs)
finally:
if priority is not None:
self._connections.put((priority, conn))
return super(ConnectionThreadPoolExecutor, self).submit(conn_fn)