rally/tests/unit/plugins/common/sla/test_outliers.py
Anton Studenov 6e73568e16 [validation] Use jsonschema validator in SLA plugins
* Added small corrections to SLA schemas
* Renamed test_ouliers.py to test_outliers.py

Change-Id: I6b72a77d0c1d4f60a94c0687f470beed8b58bd97
2017-04-04 15:12:25 +03:00

129 lines
5.2 KiB
Python

# Copyright 2014: Mirantis Inc.
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import ddt
from rally.plugins.common.sla import outliers
from rally.task import sla
from tests.unit import test
@ddt.ddt
class OutliersTestCase(test.TestCase):
@ddt.data(({"max": 0, "min_iterations": 5, "sigmas": 2.5}, True),
({"max": -1}, False),
({"max": 0, "min_iterations": 2}, False),
({"max": 0, "sigmas": 0}, False),
({"foo": "bar"}, False))
@ddt.unpack
def test_validate(self, config, valid):
results = sla.SLA.validate("outliers", None, None, config)
if valid:
self.assertEqual([], results)
else:
self.assertEqual(1, len(results))
def test_result(self):
sla1 = outliers.Outliers({"max": 1})
sla2 = outliers.Outliers({"max": 2})
iteration_durations = [3.1, 4.2, 3.6, 4.5, 2.8, 3.3, 4.1, 3.8, 4.3,
2.9, 10.2, 11.2, 3.4] # outliers: 10.2, 11.2
for sla_inst in [sla1, sla2]:
for d in iteration_durations:
sla_inst.add_iteration({"duration": d})
self.assertFalse(sla1.result()["success"]) # 2 outliers > 1
self.assertTrue(sla2.result()["success"]) # 2 outliers <= 2
self.assertEqual("Failed", sla1.status())
self.assertEqual("Passed", sla2.status())
def test_result_large_sigmas(self):
sla_inst = outliers.Outliers({"max": 1, "sigmas": 5})
iteration_durations = [3.1, 4.2, 3.6, 4.5, 2.8, 3.3, 4.1, 3.8, 4.3,
2.9, 10.2, 11.2, 3.4]
for d in iteration_durations:
sla_inst.add_iteration({"duration": d})
# NOTE(msdubov): No outliers registered since sigmas = 5 (not 2)
self.assertTrue(sla_inst.result()["success"])
self.assertEqual("Passed", sla_inst.status())
def test_result_no_iterations(self):
sla_inst = outliers.Outliers({"max": 0})
self.assertTrue(sla_inst.result()["success"])
def test_result_few_iterations_large_min_iterations(self):
sla_inst = outliers.Outliers({"max": 0, "min_iterations": 10})
iteration_durations = [3.1, 4.2, 4.7, 3.6, 15.14, 2.8]
for d in iteration_durations:
sla_inst.add_iteration({"duration": d})
# NOTE(msdubov): SLA doesn't fail because it hasn't iterations < 10
self.assertTrue(sla_inst.result()["success"])
def test_result_few_iterations_small_min_iterations(self):
sla_inst = outliers.Outliers({"max": 0, "min_iterations": 5})
iteration_durations = [3.1, 4.2, 4.7, 3.6, 15.14, 2.8]
for d in iteration_durations:
sla_inst.add_iteration({"duration": d})
# NOTE(msdubov): Now this SLA can fail with >= 5 iterations
self.assertFalse(sla_inst.result()["success"])
def test_add_iteration(self):
sla_inst = outliers.Outliers({"max": 1})
# NOTE(msdubov): One outlier in the first 11 iterations
first_iterations = [3.1, 4.2, 3.6, 4.5, 2.8, 3.3, 4.1, 3.8, 4.3,
2.9, 10.2]
for d in first_iterations:
self.assertTrue(sla_inst.add_iteration({"duration": d}))
# NOTE(msdubov): 12th iteration makes the SLA always failed
self.assertFalse(sla_inst.add_iteration({"duration": 11.2}))
self.assertFalse(sla_inst.add_iteration({"duration": 3.4}))
@ddt.data([[3.1, 4.2, 3.6, 4.5, 2.8, 3.3, 4.1, 3.8, 4.3, 2.9, 10.2],
[3.1, 4.2, 3.6, 4.5, 2.8, 3.3, 20.1, 3.8, 4.3, 2.9, 24.2],
[3.1, 4.2, 3.6, 4.5, 2.8, 3.3, 4.1, 30.8, 4.3, 49.9, 69.2]])
def test_merge(self, durations):
single_sla = outliers.Outliers({"max": 1})
for dd in durations:
for d in dd:
single_sla.add_iteration({"duration": d})
slas = [outliers.Outliers({"max": 1})
for _ in durations]
for idx, sla_inst in enumerate(slas):
for duration in durations[idx]:
sla_inst.add_iteration({"duration": duration})
merged_sla = slas[0]
for sla_inst in slas[1:]:
merged_sla.merge(sla_inst)
self.assertEqual(single_sla.success, merged_sla.success)
self.assertEqual(single_sla.iterations, merged_sla.iterations)
# self.assertEqual(single_sla.threshold, merged_sla.threshold)
# NOTE(ikhudoshyn): We are unable to implement
# rally.plugins.common.sla.outliers.Outliers.merge(..) correctly
# (see my comment for the method)
# The assert above will fail with the majority of data
# The line below passes with this particular data
# but may fail as well on another data
self.assertEqual(single_sla.outliers, merged_sla.outliers)