Sergey Skripnick fa1f62644c Reduce number of points in generated charts
In some cases number of iterations is too much for direct charting.

Also reduce number of digits after the decimal point.

Change-Id: I7ae526ae41500a8a0c33a7014e93cde210687df9
2014-07-22 12:15:14 +03:00

301 lines
11 KiB
Python

# Copyright 2014: Mirantis Inc.
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import json
import mock
from rally.benchmark.processing import plot
from tests import test
class PlotTestCase(test.TestCase):
@mock.patch("rally.benchmark.processing.plot.open", create=True)
@mock.patch("rally.benchmark.processing.plot.mako.template.Template")
@mock.patch("rally.benchmark.processing.plot.os.path.dirname")
@mock.patch("rally.benchmark.processing.plot._process_results")
def test_plot(self, mock_proc_results, mock_dirname, mock_template,
mock_open):
mock_dirname.return_value = "abspath"
mock_open.return_value = mock_open
mock_open.__enter__.return_value = mock_open
mock_open.read.return_value = "some_template"
templ = mock.MagicMock()
templ.render.return_value = "output"
mock_template.return_value = templ
mock_proc_results.return_value = [{"name": "a"}, {"name": "b"}]
result = plot.plot(["abc"])
self.assertEqual(result, templ.render.return_value)
templ.render.assert_called_once_with(
data=json.dumps(mock_proc_results.return_value),
tasks=map(lambda r: r["name"], mock_proc_results.return_value)
)
mock_template.assert_called_once_with(mock_open.read.return_value)
mock_open.assert_called_once_with("%s/src/index.mako"
% mock_dirname.return_value)
@mock.patch("rally.benchmark.processing.plot._prepare_data")
@mock.patch("rally.benchmark.processing.plot._process_atomic")
@mock.patch("rally.benchmark.processing.plot._process_main_duration")
def test__process_results(self, mock_main_duration, mock_atomic,
mock_prepare):
results = [
{"key": {"name": "n1", "pos": 1, "kw": "config1"}},
{"key": {"name": "n2", "pos": 2, "kw": "config2"}}
]
table_cols = [
{"title": "action", "class": "center"},
{"title": "min (sec)", "class": "center"},
{"title": "avg (sec)", "class": "center"},
{"title": "max (sec)", "class": "center"},
{"title": "90 percentile", "class": "center"},
{"title": "95 percentile", "class": "center"},
{"title": "success", "class": "center"},
{"title": "count", "class": "center"}]
mock_main_duration.return_value = "main_duration"
mock_atomic.return_value = "main_atomic"
output = plot._process_results(results)
for i, r in enumerate(results):
self.assertEqual(output[i], {
"name": "%s (task #%d)" % (r["key"]["name"], r["key"]["pos"]),
"config": {r["key"]["name"]: [r["key"]["kw"]]},
"duration": mock_main_duration.return_value,
"atomic": mock_atomic.return_value,
"table_cols": table_cols,
"table_rows": [['total', None, None, None, None, None, 0, 0]]
})
def test__process_main_time(self):
result = {
"result": [
{
"error": [],
"duration": 1,
"idle_duration": 2
},
{
"error": True,
"duration": 1,
"idle_duration": 1
},
{
"error": [],
"duration": 2,
"idle_duration": 3
}
]
}
output = plot._process_main_duration(result,
plot._prepare_data(result))
self.assertEqual(output, {
"pie": [
{"key": "success", "value": 2},
{"key": "errors", "value": 1}
],
"iter": [
{
"key": "duration",
"values": [(1, 1), (2, 0), (3, 2)]
},
{
"key": "idle_duration",
"values": [(1, 2), (2, 0), (3, 3)]
}
],
"histogram": [
{
"key": "task",
"method": "Square Root Choice",
"values": [{"x": 1, "y": 1}, {"x": 1, "y": 0}]
},
{
"key": "task",
"method": "Sturges Formula",
"values": [{"x": 1, "y": 1}, {"x": 1, "y": 0}]
},
{
"key": "task",
"method": "Rice Rule",
"values": [{"x": 1, "y": 1}, {"x": 1, "y": 0},
{"x": 1, "y": 0}]
},
{
"key": "task",
"method": "One Half",
"values": [{"x": 2, "y": 2}]
}
]
})
def test__process_atomic_time(self):
result = {
"result": [
{
"error": [],
"atomic_actions": [
{"action": "action1", "duration": 1},
{"action": "action2", "duration": 2}
]
},
{
"error": ["some", "error", "occurred"],
"atomic_actions": [
{"action": "action1", "duration": 1},
{"action": "action2", "duration": 2}
]
},
{
"error": [],
"atomic_actions": [
{"action": "action1", "duration": 3},
{"action": "action2", "duration": 4}
]
}
]
}
data = {"atomic_durations": {"action1": [1, 0, 3],
"action2": [2, 0, 4]}}
output = plot._process_atomic(result, data)
self.assertEqual(output, {
"histogram": [
[
{
"key": "action1",
"disabled": 0,
"method": "Square Root Choice",
"values": [{"x": 2, "y": 1}, {"x": 3, "y": 1}]
},
{
"key": "action1",
"disabled": 0,
"method": "Sturges Formula",
"values": [{"x": 2, "y": 1}, {"x": 3, "y": 1}]
},
{
"key": "action1",
"disabled": 0,
"method": "Rice Rule",
"values": [{"x": 1, "y": 1}, {"x": 1, "y": 0},
{"x": 1, "y": 0}]
},
{
"key": "action1",
"disabled": 0,
"method": "One Half",
"values": [{"x": 3, "y": 2}]
},
],
[
{
"key": "action2",
"disabled": 1,
"method": "Square Root Choice",
"values": [{"x": 3, "y": 1}, {"x": 4, "y": 1}]
},
{
"key": "action2",
"disabled": 1,
"method": "Sturges Formula",
"values": [{"x": 3, "y": 1}, {"x": 4, "y": 1}]
},
{
"key": "action2",
"disabled": 1,
"method": "Rice Rule",
"values": [{"x": 2, "y": 1}, {"x": 2, "y": 0},
{"x": 2, "y": 0}]
},
{
"key": "action2",
"disabled": 1,
"method": "One Half",
"values": [{"x": 4, "y": 2}]
}
]
],
"pie": [
{"key": "action1", "value": 2.0},
{"key": "action2", "value": 3.0}
],
"iter": [
{
"key": "action1",
"values": [(1, 1), (2, 0), (3, 3)]
},
{
"key": "action2",
"values": [(1, 2), (2, 0), (3, 4)]
}
]
})
def test__prepare_data(self):
def assertAlmostEqualLists(l1, l2, places=1):
self.assertEqual(len(l1), len(l2), "List sizes differs")
for vals in zip(l1, l2):
self.assertAlmostEqual(*vals, places=places)
data = []
for i in range(100):
atomic_actions = [
{"action": "a1", "duration": i + 0.1},
{"action": "a2", "duration": i + 0.8},
]
row = {
"duration": i * 3.14,
"idle_duration": i * 0.2,
"error": [],
"atomic_actions": atomic_actions,
}
data.append(row)
data.insert(42, {"error": ["error"]})
data.insert(52, {"error": ["error"]})
new_data = plot._prepare_data({"result": data}, reduce_rows=10)
self.assertEqual(2, new_data["num_errors"])
expected_durations = [0.0, 31.4, 65.9, 100.5, 127.2,
161.6, 201.0, 238.6, 273.2, 307.7]
total_durations = new_data["total_durations"]["duration"]
assertAlmostEqualLists(expected_durations, total_durations)
expected_durations = [0.0, 2.0, 4.2, 6.4, 8.1, 10.3,
12.8, 15.2, 17.4, 19.6]
idle_durations = new_data["total_durations"]["idle_duration"]
assertAlmostEqualLists(expected_durations, idle_durations)
expected_durations = [0.1, 10.1, 21.1, 32.1, 40.6,
51.6, 64.1, 76.1, 87.1, 98.1]
atomic_a1 = new_data["atomic_durations"]["a1"]
assertAlmostEqualLists(expected_durations, atomic_a1)
expected_durations = [0.8, 10.8, 21.8, 32.8, 41.3,
52.2, 64.8, 76.8, 87.8, 98.8]
atomic_a2 = new_data["atomic_durations"]["a2"]
assertAlmostEqualLists(expected_durations, atomic_a2)