4 Commits

Author SHA1 Message Date
Romain LE DISEZ
673fda7620 Configure diskfile per storage policy
With this commit, each storage policy can define the diskfile to use to
access objects. Selection of the diskfile is done in swift.conf.

Example:
    [storage-policy:0]
    name = gold
    policy_type = replication
    default = yes
    diskfile = egg:swift#replication.fs

The diskfile configuration item accepts the same format than middlewares
declaration: [[scheme:]egg_name#]entry_point
The egg_name is optional and default to "swift". The scheme is optional
and default to the only valid value "egg". The upstream entry points are
"replication.fs" and "erasure_coding.fs".

Co-Authored-By: Alexandre Lécuyer <alexandre.lecuyer@corp.ovh.com>
Co-Authored-By: Alistair Coles <alistairncoles@gmail.com>
Change-Id: I070c21bc1eaf1c71ac0652cec9e813cadcc14851
2018-08-24 02:29:13 +00:00
Tim Burke
36c42974d6 py3: Port more CLI tools
Bring under test

 - test/unit/cli/test_dispersion_report.py
 - test/unit/cli/test_info.py and
 - test/unit/cli/test_relinker.py

I've verified that swift-*-info (at least) behave reasonably under
py3, even swift-object-info when there's non-utf8 metadata on the
data/meta file.

Change-Id: Ifed4b8059337c395e56f5e9f8d939c34fe4ff8dd
2018-02-28 21:10:01 +00:00
Samuel Merritt
728b4ba140 Add checksum to object extended attributes
Currently, our integrity checking for objects is pretty weak when it
comes to object metadata. If the extended attributes on a .data or
.meta file get corrupted in such a way that we can still unpickle it,
we don't have anything that detects that.

This could be especially bad with encrypted etags; if the encrypted
etag (X-Object-Sysmeta-Crypto-Etag or whatever it is) gets some bits
flipped, then we'll cheerfully decrypt the cipherjunk into plainjunk,
then send it to the client. Net effect is that the client sees a GET
response with an ETag that doesn't match the MD5 of the object *and*
Swift has no way of detecting and quarantining this object.

Note that, with an unencrypted object, if the ETag metadatum gets
mangled, then the object will be quarantined by the object server or
auditor, whichever notices first.

As part of this commit, I also ripped out some mocking of
getxattr/setxattr in tests. It appears to be there to allow unit tests
to run on systems where /tmp doesn't support xattrs. However, since
the mock is keyed off of inode number and inode numbers get re-used,
there's lots of leakage between different test runs. On a real FS,
unlinking a file and then creating a new one of the same name will
also reset the xattrs; this isn't the case with the mock.

The mock was pretty old; Ubuntu 12.04 and up all support xattrs in
/tmp, and recent Red Hat / CentOS releases do too. The xattr mock was
added in 2011; maybe it was to support Ubuntu Lucid Lynx?

Bonus: now you can pause a test with the debugger, inspect its files
in /tmp, and actually see the xattrs along with the data.

Since this patch now uses a real filesystem for testing filesystem
operations, tests are skipped if the underlying filesystem does not
support setting xattrs (eg tmpfs or more than 4k of xattrs on ext4).

References to "/tmp" have been replaced with calls to
tempfile.gettempdir(). This will allow setting the TMPDIR envvar in
test setup and getting an XFS filesystem instead of ext4 or tmpfs.

THIS PATCH SIGNIFICANTLY CHANGES TESTING ENVIRONMENTS

With this patch, every test environment will require TMPDIR to be
using a filesystem that supports at least 4k of extended attributes.
Neither ext4 nor tempfs support this. XFS is recommended.

So why all the SkipTests? Why not simply raise an error? We still need
the tests to run on the base image for OpenStack's CI system. Since
we were previously mocking out xattr, there wasn't a problem, but we
also weren't actually testing anything. This patch adds functionality
to validate xattr data, so we need to drop the mock.

`test.unit.skip_if_no_xattrs()` is also imported into `test.functional`
so that functional tests can import it from the functional test
namespace.

The related OpenStack CI infrastructure changes are made in
https://review.openstack.org/#/c/394600/.

Co-Authored-By: John Dickinson <me@not.mn>

Change-Id: I98a37c0d451f4960b7a12f648e4405c6c6716808
2017-11-03 13:30:05 -04:00
Christian Schwede
e1140666d6 Add support to increase object ring partition power
This patch adds methods to increase the partition power of an existing
object ring without downtime for the users using a 3-step process. Data
won't be moved to other nodes; objects using the new increased partition
power will be located on the same device and are hardlinked to avoid
data movement.

1. A new setting "next_part_power" will be added to the rings, and once
the proxy server reloaded the rings it will send this value to the
object servers on any write operation. Object servers will now create a
hard-link in the new location to the original DiskFile object. Already
existing data will be relinked using a new tool in the new locations
using hardlinks.

2. The actual partition power itself will be increased. Servers will now
use the new partition power to read from and write to. No longer
required hard links in the old object location have to be removed now by
the relinker tool; the relinker tool reads the next_part_power setting
to find object locations that need to be cleaned up.

3. The "next_part_power" flag will be removed.

This mostly implements the spec in [1]; however it's not using an
"epoch" as described there. The idea of the epoch was to store data
using different partition powers in their own namespace to avoid
conflicts with auditors and replicators as well as being able to abort
such an operation and just remove the new tree.  This would require some
heavy change of the on-disk data layout, and other object-server
implementations would be required to adopt this scheme too.

Instead the object-replicator is now aware that there is a partition
power increase in progress and will skip replication of data in that
storage policy; the relinker tool should be simply run and afterwards
the partition power will be increased. This shouldn't take that much
time (it's only walking the filesystem and hardlinking); impact should
be low therefore. The relinker should be run on all storage nodes at the
same time in parallel to decrease the required time (though this is not
mandatory). Failures during relinking should not affect cluster
operations - relinking can be even aborted manually and restarted later.

Auditors are not quarantining objects written to a path with a different
partition power and therefore working as before (though they are reading
each object twice in the worst case before the no longer needed hard
links are removed).

Co-Authored-By: Alistair Coles <alistair.coles@hpe.com>
Co-Authored-By: Matthew Oliver <matt@oliver.net.au>
Co-Authored-By: Tim Burke <tim.burke@gmail.com>

[1] https://specs.openstack.org/openstack/swift-specs/specs/in_progress/
increasing_partition_power.html

Change-Id: I7d6371a04f5c1c4adbb8733a71f3c177ee5448bb
2017-06-15 15:08:48 -07:00