taskflow/taskflow/examples/simple_linear.py

67 lines
2.4 KiB
Python

# -*- coding: utf-8 -*-
# Copyright (C) 2012-2013 Yahoo! Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import logging
import os
import sys
logging.basicConfig(level=logging.ERROR)
top_dir = os.path.abspath(os.path.join(os.path.dirname(__file__),
os.pardir,
os.pardir))
sys.path.insert(0, top_dir)
import taskflow.engines
from taskflow.patterns import linear_flow as lf
from taskflow import task
# INTRO: In this example we create two tasks, each of which ~calls~ a given
# ~phone~ number (provided as a function input) in a linear fashion (one after
# the other). For a workflow which is serial this shows a extremely simple way
# of structuring your tasks (the code that does the work) into a linear
# sequence (the flow) and then passing the work off to an engine, with some
# initial data to be ran in a reliable manner.
#
# NOTE(harlowja): This example shows a basic usage of the taskflow structures
# without involving the complexity of persistence. Using the structures that
# taskflow provides via tasks and flows makes it possible for you to easily at
# a later time hook in a persistence layer (and then gain the functionality
# that offers) when you decide the complexity of adding that layer in
# is 'worth it' for your application's usage pattern (which certain
# applications may not need).
class CallJim(task.Task):
def execute(self, jim_number, *args, **kwargs):
print("Calling jim %s." % jim_number)
class CallJoe(task.Task):
def execute(self, joe_number, *args, **kwargs):
print("Calling joe %s." % joe_number)
# Create your flow and associated tasks (the work to be done).
flow = lf.Flow('simple-linear').add(
CallJim(),
CallJoe()
)
# Now run that flow using the provided initial data (store below).
taskflow.engines.run(flow, store=dict(joe_number=444,
jim_number=555))