taskflow/taskflow/examples/simple_linear.py
Joshua Harlow ebfd9d0da9 Add docs/intro to simple_linear example
Change-Id: I6911337bf492d5cfc7e48a006dbf076826a18a62
2013-10-16 16:56:44 -07:00

68 lines
2.5 KiB
Python

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
# Copyright (C) 2012-2013 Yahoo! Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import logging
import os
import sys
logging.basicConfig(level=logging.ERROR)
top_dir = os.path.abspath(os.path.join(os.path.dirname(__file__),
os.pardir,
os.pardir))
sys.path.insert(0, top_dir)
import taskflow.engines
from taskflow.patterns import linear_flow as lf
from taskflow import task
# INTRO: In this example we create two tasks, each of which ~calls~ a given
# ~phone~ number (provided as a function input) in a linear fashion (one after
# the other). For a workflow which is serial this shows a extremly simple way
# of structuring your tasks (the code that does the work) into a linear
# sequence (the flow) and then passing the work off to an engine, with some
# initial data to be ran in a reliable manner.
#
# This example shows a basic usage of the taskflow structures without involving
# the complexity of persistence. Using the structures that taskflow provides
# via tasks and flows makes it possible for you to easily at a later time
# hook in a persistence layer (and then gain the functionality that offers)
# when you decide the complexity of adding that layer in is 'worth it' for your
# applications usage pattern (which some applications may not need).
class CallJim(task.Task):
def execute(self, jim_number, *args, **kwargs):
print("Calling jim %s." % jim_number)
class CallJoe(task.Task):
def execute(self, joe_number, *args, **kwargs):
print("Calling joe %s." % joe_number)
# Create your flow and associated tasks (the work to be done).
flow = lf.Flow('simple-linear').add(
CallJim(),
CallJoe()
)
# Now run that flow using the provided initial data (store below)
taskflow.engines.run(flow, store=dict(joe_number=444,
jim_number=555))