Version 2.0.0 of JSEncrypt library packaged for XStatic

This commit is contained in:
Radomir Dopieralski 2014-05-20 15:18:24 +02:00
commit a8e4b9981f
8 changed files with 586 additions and 0 deletions

9
.gitignore vendored Normal file
View File

@ -0,0 +1,9 @@
*.pyc
*.sw?
*.sqlite3
.DS_STORE
*.egg-info
.venv
.tox
build
dist

8
MANIFEST.in Normal file
View File

@ -0,0 +1,8 @@
include README.txt
recursive-include xstatic/pkg/jsencrypt *
global-exclude *.pyc
global-exclude *.pyo
global-exclude *.orig
global-exclude *.rej

13
README.txt Normal file
View File

@ -0,0 +1,13 @@
XStatic-JSEncrypt
--------------
JSEncrypt JavaScript library packaged for setuptools (easy_install) / pip.
This package is intended to be used by **any** project that needs these files.
It intentionally does **not** provide any extra code except some metadata
**nor** has any extra requirements. You MAY use some minimal support code from
the XStatic base package, if you like.
You can find more info about the xstatic packaging way in the package `XStatic`.

27
setup.py Normal file
View File

@ -0,0 +1,27 @@
from xstatic.pkg import jsencrypt as xs
# The README.txt file should be written in reST so that PyPI can use
# it to generate your project's PyPI page.
long_description = open('README.txt').read()
from setuptools import setup, find_packages
setup(
name=xs.PACKAGE_NAME,
version=xs.PACKAGE_VERSION,
description=xs.DESCRIPTION,
long_description=long_description,
classifiers=xs.CLASSIFIERS,
keywords=xs.KEYWORDS,
maintainer=xs.MAINTAINER,
maintainer_email=xs.MAINTAINER_EMAIL,
license=xs.LICENSE,
url=xs.HOMEPAGE,
platforms=xs.PLATFORMS,
packages=find_packages(),
namespace_packages=['xstatic', 'xstatic.pkg', ],
include_package_data=True,
zip_safe=False,
install_requires=[], # nothing! :)
# if you like, you MAY use the 'XStatic' package.
)

1
xstatic/__init__.py Normal file
View File

@ -0,0 +1 @@
__import__('pkg_resources').declare_namespace(__name__)

1
xstatic/pkg/__init__.py Normal file
View File

@ -0,0 +1 @@
__import__('pkg_resources').declare_namespace(__name__)

View File

@ -0,0 +1,49 @@
"""
XStatic resource package
See package 'XStatic' for documentation and basic tools.
"""
DISPLAY_NAME = 'JSEncrypt' # official name, upper/lowercase allowed, no spaces
PACKAGE_NAME = 'XStatic-%s' % DISPLAY_NAME # name used for PyPi
NAME = __name__.split('.')[-1] # package name (e.g. 'foo' or 'foo_bar')
# please use a all-lowercase valid python
# package name
VERSION = '2.0.0' # version of the packaged files, please use the upstream
# version number
BUILD = '1' # our package build number, so we can release new builds
# with fixes for xstatic stuff.
PACKAGE_VERSION = VERSION + '.' + BUILD # version used for PyPi
DESCRIPTION = "%s %s (XStatic packaging standard)" % (DISPLAY_NAME, VERSION)
PLATFORMS = 'any'
CLASSIFIERS = []
KEYWORDS = '%s xstatic' % NAME
# XStatic-* package maintainer:
MAINTAINER = 'Radomir Dopieralski'
MAINTAINER_EMAIL = 'openstack@sheep.art.pl'
# this refers to the project homepage of the stuff we packaged:
HOMEPAGE = 'http://travistidwell.com/jsencrypt/'
# this refers to all files:
LICENSE = '(same as %s)' % DISPLAY_NAME
from os.path import join, dirname
BASE_DIR = join(dirname(__file__), 'data')
# linux package maintainers just can point to their file locations like this:
#BASE_DIR = '/usr/share/javascript/jsencrypt'
LOCATIONS = {
# CDN locations (if no public CDN exists, use an empty dict)
# if value is a string, it is a base location, just append relative
# path/filename. if value is a dict, do another lookup using the
# relative path/filename you want.
# your relative path/filenames should usually be without version
# information, because either the base dir/url is exactly for this
# version or the mapping will care for accessing this version.
}

View File

@ -0,0 +1,478 @@
/**
* Retrieve the hexadecimal value (as a string) of the current ASN.1 element
* @returns {string}
* @public
*/
ASN1.prototype.getHexStringValue = function(){
var hexString = this.toHexString();
var offset = this.header * 2;
var length = this.length * 2;
return hexString.substr(offset,length);
};
/**
* Method to parse a pem encoded string containing both a public or private key.
* The method will translate the pem encoded string in a der encoded string and
* will parse private key and public key parameters. This method accepts public key
* in the rsaencryption pkcs #1 format (oid: 1.2.840.113549.1.1.1).
* @todo Check how many rsa formats use the same format of pkcs #1. The format is defined as:
* PublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* PublicKey BIT STRING
* }
* Where AlgorithmIdentifier is:
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
* parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
* }
* and PublicKey is a SEQUENCE encapsulated in a BIT STRING
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* }
* it's possible to examine the structure of the keys obtained from openssl using
* an asn.1 dumper as the one used here to parse the components: http://lapo.it/asn1js/
* @argument {string} pem the pem encoded string, can include the BEGIN/END header/footer
* @private
*/
RSAKey.prototype.parseKey = function(pem) {
try{
var reHex = /^\s*(?:[0-9A-Fa-f][0-9A-Fa-f]\s*)+$/;
var der = reHex.test(pem) ? Hex.decode(pem) : Base64.unarmor(pem);
var asn1 = ASN1.decode(der);
if (asn1.sub.length === 9){
// the data is a Private key
//in order
//Algorithm version, n, e, d, p, q, dmp1, dmq1, coeff
//Alg version, modulus, public exponent, private exponent, prime 1, prime 2, exponent 1, exponent 2, coefficient
var modulus = asn1.sub[1].getHexStringValue(); //bigint
this.n = parseBigInt(modulus, 16);
var public_exponent = asn1.sub[2].getHexStringValue(); //int
this.e = parseInt(public_exponent, 16);
var private_exponent = asn1.sub[3].getHexStringValue(); //bigint
this.d = parseBigInt(private_exponent, 16);
var prime1 = asn1.sub[4].getHexStringValue(); //bigint
this.p = parseBigInt(prime1, 16);
var prime2 = asn1.sub[5].getHexStringValue(); //bigint
this.q = parseBigInt(prime2, 16);
var exponent1 = asn1.sub[6].getHexStringValue(); //bigint
this.dmp1 = parseBigInt(exponent1, 16);
var exponent2 = asn1.sub[7].getHexStringValue(); //bigint
this.dmq1 = parseBigInt(exponent2, 16);
var coefficient = asn1.sub[8].getHexStringValue(); //bigint
this.coeff = parseBigInt(coefficient, 16);
}else if (asn1.sub.length === 2){
//Public key
//The data PROBABLY is a public key
var bit_string = asn1.sub[1];
var sequence = bit_string.sub[0];
var modulus = sequence.sub[0].getHexStringValue();
this.n = parseBigInt(modulus, 16);
var public_exponent = sequence.sub[1].getHexStringValue();
this.e = parseInt(public_exponent, 16);
}else{
return false;
}
return true;
}catch(ex){
return false;
}
};
/**
* Translate rsa parameters in a hex encoded string representing the rsa key.
* The translation follow the ASN.1 notation :
* RSAPrivateKey ::= SEQUENCE {
* version Version,
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* }
* @returns {string} DER Encoded String representing the rsa private key
* @private
*/
RSAKey.prototype.getPrivateBaseKey = function() {
//Algorithm version, n, e, d, p, q, dmp1, dmq1, coeff
//Alg version, modulus, public exponent, private exponent, prime 1, prime 2, exponent 1, exponent 2, coefficient
var options = {
'array' : [
new KJUR.asn1.DERInteger({'int' : 0}),
new KJUR.asn1.DERInteger({'bigint' : this.n}),
new KJUR.asn1.DERInteger({'int' : this.e}),
new KJUR.asn1.DERInteger({'bigint' : this.d}),
new KJUR.asn1.DERInteger({'bigint' : this.p}),
new KJUR.asn1.DERInteger({'bigint' : this.q}),
new KJUR.asn1.DERInteger({'bigint' : this.dmp1}),
new KJUR.asn1.DERInteger({'bigint' : this.dmq1}),
new KJUR.asn1.DERInteger({'bigint' : this.coeff})
]
};
var seq = new KJUR.asn1.DERSequence(options);
return seq.getEncodedHex();
};
/**
* base64 (pem) encoded version of the DER encoded representation
* @returns {string} pem encoded representation without header and footer
* @public
*/
RSAKey.prototype.getPrivateBaseKeyB64 = function (){
return hex2b64(this.getPrivateBaseKey());
};
/**
* Translate rsa parameters in a hex encoded string representing the rsa public key.
* The representation follow the ASN.1 notation :
* PublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* PublicKey BIT STRING
* }
* Where AlgorithmIdentifier is:
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
* parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
* }
* and PublicKey is a SEQUENCE encapsulated in a BIT STRING
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* }
* @returns {string} DER Encoded String representing the rsa public key
* @private
*/
RSAKey.prototype.getPublicBaseKey = function() {
var options = {
'array' : [
new KJUR.asn1.DERObjectIdentifier({'oid':'1.2.840.113549.1.1.1'}), //RSA Encryption pkcs #1 oid
new KJUR.asn1.DERNull()
]
};
var first_sequence = new KJUR.asn1.DERSequence(options);
options = {
'array' : [
new KJUR.asn1.DERInteger({'bigint' : this.n}),
new KJUR.asn1.DERInteger({'int' : this.e})
]
};
var second_sequence = new KJUR.asn1.DERSequence(options);
options = {
'hex' : '00'+second_sequence.getEncodedHex()
};
var bit_string = new KJUR.asn1.DERBitString(options);
options = {
'array' : [
first_sequence,
bit_string
]
};
var seq = new KJUR.asn1.DERSequence(options);
return seq.getEncodedHex();
};
/**
* base64 (pem) encoded version of the DER encoded representation
* @returns {string} pem encoded representation without header and footer
* @public
*/
RSAKey.prototype.getPublicBaseKeyB64 = function (){
return hex2b64(this.getPublicBaseKey());
};
/**
* wrap the string in block of width chars. The default value for rsa keys is 64
* characters.
* @param {string} str the pem encoded string without header and footer
* @param {Number} [width=64] - the length the string has to be wrapped at
* @returns {string}
* @private
*/
RSAKey.prototype.wordwrap = function(str, width) {
width = width || 64;
if (!str)
return str;
var regex = '(.{1,' + width + '})( +|$\n?)|(.{1,' + width + '})';
return str.match(RegExp(regex, 'g')).join('\n');
};
/**
* Retrieve the pem encoded private key
* @returns {string} the pem encoded private key with header/footer
* @public
*/
RSAKey.prototype.getPrivateKey = function() {
var key = "-----BEGIN RSA PRIVATE KEY-----\n";
key += this.wordwrap(this.getPrivateBaseKeyB64()) + "\n";
key += "-----END RSA PRIVATE KEY-----";
return key;
};
/**
* Retrieve the pem encoded public key
* @returns {string} the pem encoded public key with header/footer
* @public
*/
RSAKey.prototype.getPublicKey = function() {
var key = "-----BEGIN PUBLIC KEY-----\n";
key += this.wordwrap(this.getPublicBaseKeyB64()) + "\n";
key += "-----END PUBLIC KEY-----";
return key;
};
/**
* Check if the object contains the necessary parameters to populate the rsa modulus
* and public exponent parameters.
* @param {Object} [obj={}] - An object that may contain the two public key
* parameters
* @returns {boolean} true if the object contains both the modulus and the public exponent
* properties (n and e)
* @todo check for types of n and e. N should be a parseable bigInt object, E should
* be a parseable integer number
* @private
*/
RSAKey.prototype.hasPublicKeyProperty = function(obj){
obj = obj || {};
return obj.hasOwnProperty('n') &&
obj.hasOwnProperty('e');
};
/**
* Check if the object contains ALL the parameters of an RSA key.
* @param {Object} [obj={}] - An object that may contain nine rsa key
* parameters
* @returns {boolean} true if the object contains all the parameters needed
* @todo check for types of the parameters all the parameters but the public exponent
* should be parseable bigint objects, the public exponent should be a parseable integer number
* @private
*/
RSAKey.prototype.hasPrivateKeyProperty = function(obj){
obj = obj || {};
return obj.hasOwnProperty('n') &&
obj.hasOwnProperty('e') &&
obj.hasOwnProperty('d') &&
obj.hasOwnProperty('p') &&
obj.hasOwnProperty('q') &&
obj.hasOwnProperty('dmp1') &&
obj.hasOwnProperty('dmq1') &&
obj.hasOwnProperty('coeff');
};
/**
* Parse the properties of obj in the current rsa object. Obj should AT LEAST
* include the modulus and public exponent (n, e) parameters.
* @param {Object} obj - the object containing rsa parameters
* @private
*/
RSAKey.prototype.parsePropertiesFrom = function(obj){
this.n = obj.n;
this.e = obj.e;
if (obj.hasOwnProperty('d')){
this.d = obj.d;
this.p = obj.p;
this.q = obj.q;
this.dmp1 = obj.dmp1;
this.dmq1 = obj.dmq1;
this.coeff = obj.coeff;
}
};
/**
* Create a new JSEncryptRSAKey that extends Tom Wu's RSA key object.
* This object is just a decorator for parsing the key parameter
* @param {string|Object} key - The key in string format, or an object containing
* the parameters needed to build a RSAKey object.
* @constructor
*/
var JSEncryptRSAKey = function(key) {
// Call the super constructor.
RSAKey.call(this);
// If a key key was provided.
if (key) {
// If this is a string...
if (typeof key === 'string') {
this.parseKey(key);
}else if (this.hasPrivateKeyProperty(key)||this.hasPublicKeyProperty(key)) {
// Set the values for the key.
this.parsePropertiesFrom(key);
}
}
};
// Derive from RSAKey.
JSEncryptRSAKey.prototype = new RSAKey();
// Reset the contructor.
JSEncryptRSAKey.prototype.constructor = JSEncryptRSAKey;
/**
*
* @param {Object} [options = {}] - An object to customize JSEncrypt behaviour
* possible parameters are:
* - default_key_size {number} default: 1024 the key size in bit
* - default_public_exponent {string} default: '010001' the hexadecimal representation of the public exponent
* - log {boolean} default: false whether log warn/error or not
* @constructor
*/
var JSEncrypt = function(options) {
options = options || {};
this.default_key_size = parseInt(options.default_key_size) || 1024;
this.default_public_exponent = options.default_public_exponent || '010001'; //65537 default openssl public exponent for rsa key type
this.log = options.log || false;
// The private and public key.
this.key = null;
};
/**
* Method to set the rsa key parameter (one method is enough to set both the public
* and the private key, since the private key contains the public key paramenters)
* Log a warning if logs are enabled
* @param {Object|string} key the pem encoded string or an object (with or without header/footer)
* @public
*/
JSEncrypt.prototype.setKey = function(key){
if (this.log && this.key)
console.warn('A key was already set, overriding existing.');
this.key = new JSEncryptRSAKey(key);
};
/**
* Proxy method for setKey, for api compatibility
* @see setKey
* @public
*/
JSEncrypt.prototype.setPrivateKey = function(privkey) {
// Create the key.
this.setKey(privkey);
};
/**
* Proxy method for setKey, for api compatibility
* @see setKey
* @public
*/
JSEncrypt.prototype.setPublicKey = function(pubkey) {
// Sets the public key.
this.setKey(pubkey);
};
/**
* Proxy method for RSAKey object's decrypt, decrypt the string using the private
* components of the rsa key object. Note that if the object was not set will be created
* on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor
* @param {string} string base64 encoded crypted string to decrypt
* @return {string} the decrypted string
* @public
*/
JSEncrypt.prototype.decrypt = function(string) {
// Return the decrypted string.
try{
return this.getKey().decrypt(b64tohex(string));
}catch(ex){
return false;
}
};
/**
* Proxy method for RSAKey object's encrypt, encrypt the string using the public
* components of the rsa key object. Note that if the object was not set will be created
* on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor
* @param {string} string the string to encrypt
* @return {string} the encrypted string encoded in base64
* @public
*/
JSEncrypt.prototype.encrypt = function(string) {
// Return the encrypted string.
try{
return hex2b64(this.getKey().encrypt(string));
}catch(ex){
return false;
}
};
/**
* Getter for the current JSEncryptRSAKey object. If it doesn't exists a new object
* will be created and returned
* @param {callback} [cb] the callback to be called if we want the key to be generated
* in an async fashion
* @returns {JSEncryptRSAKey} the JSEncryptRSAKey object
* @public
*/
JSEncrypt.prototype.getKey = function(cb){
// Only create new if it does not exist.
if (!this.key) {
// Get a new private key.
this.key = new JSEncryptRSAKey();
if (cb && {}.toString.call(cb) === '[object Function]'){
this.key.generateAsync(this.default_key_size, this.default_public_exponent,cb);
return;
}
// Generate the key.
this.key.generate(this.default_key_size, this.default_public_exponent);
}
return this.key;
};
/**
* Returns the pem encoded representation of the private key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the private key WITH header and footer
* @public
*/
JSEncrypt.prototype.getPrivateKey = function() {
// Return the private representation of this key.
return this.getKey().getPrivateKey();
};
/**
* Returns the pem encoded representation of the private key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the private key WITHOUT header and footer
* @public
*/
JSEncrypt.prototype.getPrivateKeyB64 = function() {
// Return the private representation of this key.
return this.getKey().getPrivateBaseKeyB64();
};
/**
* Returns the pem encoded representation of the public key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the public key WITH header and footer
* @public
*/
JSEncrypt.prototype.getPublicKey = function() {
// Return the private representation of this key.
return this.getKey().getPublicKey();
};
/**
* Returns the pem encoded representation of the public key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the public key WITHOUT header and footer
* @public
*/
JSEncrypt.prototype.getPublicKeyB64 = function() {
// Return the private representation of this key.
return this.getKey().getPublicBaseKeyB64();
};