fault/fm-common/sources/fmAPI.cpp

536 lines
14 KiB
C++

//
// Copyright (c) 2017 Wind River Systems, Inc.
//
// SPDX-License-Identifier: Apache-2.0
//
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <list>
#include <new>
#include <vector>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <pthread.h>
#include <signal.h>
#include "fmAPI.h"
#include "fmMsg.h"
#include "fmLog.h"
#include "fmSocket.h"
#include "fmMutex.h"
#include "fmThread.h"
#include "fmAlarmUtils.h"
#define FM_MGR_HOST_NAME "controller"
#define MAX_PENDING_REQUEST 1000
#define HANDLE_SERVER_RC(hdr) \
if ((hdr)->msg_rc!=FM_ERR_OK) return (EFmErrorT) (hdr)->msg_rc
#define CHECK_RESPONSE(hdr,neededstruct) \
if (!fm_valid_srv_msg(hdr,sizeof(neededstruct))) \
return FM_ERR_COMMUNICATIONS
#define CHECK_LIST_FULL(l) \
if (l.size() == MAX_PENDING_REQUEST) \
return FM_ERR_NOT_ENOUGH_SPACE
#define CHECK_LIST_NOT_EMPTY(l) \
if (l.size() != 0) \
return FM_ERR_REQUEST_PENDING
static CFmSocket m_client;
static bool m_connected = false;
static bool m_thread = false;
typedef std::list<fm_buff_t> FmRequestListT;
static FmRequestListT & GetListOfFmRequests() {
static FmRequestListT reqs;
return reqs;
}
static CFmMutex & getListMutex() {
static CFmMutex *m = new CFmMutex;
return *m;
}
static CFmMutex & getThreadMutex() {
static CFmMutex *m = new CFmMutex;
return *m;
}
CFmMutex & getAPIMutex() {
static pthread_mutex_t ml = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
static CFmMutex *m = NULL;
if (m == NULL) {
pthread_mutex_lock(&ml);
m = new CFmMutex;
pthread_mutex_unlock(&ml);
}
return *m;
}
static void enqueue(fm_buff_t &req) {
CFmMutexGuard m(getListMutex());
GetListOfFmRequests().push_back(req);
}
static bool dequeue(fm_buff_t &req) {
CFmMutexGuard m(getListMutex());
if (GetListOfFmRequests().size() == 0) {
return false;
}
FmRequestListT::iterator it = GetListOfFmRequests().begin();
req.clear();
req = (*it);
GetListOfFmRequests().pop_front();
return true;
}
static bool fm_lib_reconnect() {
char addr[INET6_ADDRSTRLEN];
while (!m_connected) {
struct addrinfo hints;
struct addrinfo *result = NULL, *rp;
memset(&hints,0,sizeof(hints));
hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */
hints.ai_socktype = SOCK_STREAM; /* Datagram socket */
hints.ai_flags = 0; /* For wildcard IP address */
hints.ai_protocol = 0; /* Any protocol */
hints.ai_canonname = NULL;
hints.ai_addr = NULL;
hints.ai_next = NULL;
int rc = getaddrinfo(FM_MGR_HOST_NAME, NULL,
&hints,
&result);
if (rc != 0) {
FM_ERROR_LOG("controller lookup failed... errno:%d", errno);
break;
} else {
for (rp = result; rp != NULL; rp = rp->ai_next) {
if (rp->ai_family == AF_INET || rp->ai_family==AF_INET6) {
if(rp->ai_family == AF_INET) {
inet_ntop(AF_INET, &(((sockaddr_in*)rp->ai_addr)->sin_addr), addr, sizeof(addr));
} else if (rp->ai_family == AF_INET6) {
inet_ntop(AF_INET6, &(((sockaddr_in6*)rp->ai_addr)->sin6_addr), addr, sizeof(addr));
}
m_connected = m_client.connect(addr, 8001, rp->ai_family);
if (m_connected == true) {
FM_INFO_LOG("Connected to FM Manager.");
break;
} else {
FM_WARNING_LOG("Failed to connect to FM Manager.");
}
}
}
freeaddrinfo(result);
}
break;
}
return (m_connected);
}
EFmErrorT fm_msg_utils_prep_requet_msg(fm_buff_t &buff,
EFmMsgActionsT act,
const void * data,
uint32_t len) {
try {
buff.resize(sizeof(SFmMsgHdrT) + len);
} catch (...) {
FM_ERROR_LOG("Buff resize failed: errno:%d",errno);
return FM_ERR_NOMEM;
}
SFmMsgHdrT *hdr = ptr_to_hdr(buff);
hdr->action = act;
hdr->msg_size = len;
hdr->version = EFmMsgV1;
hdr->msg_rc = 0;
memcpy(ptr_to_data(buff), data, len);
return FM_ERR_OK;
}
static void fmApiJobHandlerThread(void *context) {
while (true) {
fm_buff_t buff;
buff.clear();
while (dequeue(buff)) {
while (true) {
while (!fm_lib_reconnect()) {
fmThreadSleep(200);
}
fm_log_request(buff);
// protect from other sync APIs to access the same socket
CFmMutexGuard m(getAPIMutex());
if(m_client.write_packet(buff)) {
fm_buff_t in_buff;
in_buff.clear();
if(!m_client.read_packet(in_buff)) {
// retry after read failure
fm_log_response(buff, in_buff, true);
m_connected = false;
continue;
} else {
fm_log_response(buff, in_buff);
break;
}
} else {
// retry after write failure
fm_log_request(buff, true);
m_connected = false;
continue;
}
}
}
fmThreadSleep(50);
}
}
static bool fm_lib_thread() {
CFmMutexGuard m(getThreadMutex());
if (!m_thread) {
FM_INFO_LOG("Creating thread");
if (!fmCreateThread(fmApiJobHandlerThread, NULL)) {
FM_ERROR_LOG("Fail to create API job thread");
} else {
m_thread = true;
}
}
return m_thread;
}
static EFmErrorT fm_check_thread_pending_request() {
CFmMutexGuard m(getThreadMutex());
if (m_thread) {
CHECK_LIST_NOT_EMPTY(GetListOfFmRequests());
}
return FM_ERR_OK;
}
extern "C" {
EFmErrorT fm_init_lib() {
signal(SIGINT,SIG_IGN);
CFmMutexGuard m(getAPIMutex());
if (!fm_lib_reconnect()) {
FM_ERROR_LOG("Socket connection failed\n");
return FM_ERR_NOCONNECT;
}
return FM_ERR_OK;
}
EFmErrorT fm_set_fault(const SFmAlarmDataT *alarm,
fm_uuid_t *uuid) {
CFmMutexGuard m(getAPIMutex());
if (!fm_lib_reconnect()) return FM_ERR_NOCONNECT;
fm_buff_t buff;
buff.clear();
EFmErrorT erc = fm_msg_utils_prep_requet_msg(buff, EFmCreateFault,
alarm,sizeof(*alarm));
if (erc!=FM_ERR_OK) return erc;
if (m_client.write_packet(buff)) {
if (!m_client.read_packet(buff)) {
m_connected = false;
return FM_ERR_NOCONNECT;
}
HANDLE_SERVER_RC(ptr_to_hdr(buff));
CHECK_RESPONSE(ptr_to_hdr(buff),fm_uuid_t);
if (uuid != NULL)
memcpy(*uuid,ptr_to_data(buff),sizeof(*uuid)-1);
} else {
m_connected = false;
return FM_ERR_NOCONNECT;
}
return FM_ERR_OK;
}
EFmErrorT fm_clear_fault(AlarmFilter *filter) {
CFmMutexGuard m(getAPIMutex());
if (!fm_lib_reconnect()) return FM_ERR_NOCONNECT;
fm_buff_t buff;
buff.clear();
EFmErrorT erc = fm_msg_utils_prep_requet_msg(buff, EFmDeleteFault,
filter, sizeof(*filter));
if (erc!=FM_ERR_OK) return erc;
if (m_client.write_packet(buff)) {
if (!m_client.read_packet(buff)) {
m_connected = false;
return FM_ERR_NOCONNECT;
}
HANDLE_SERVER_RC(ptr_to_hdr(buff));
} else {
m_connected = false;
return FM_ERR_NOCONNECT;
}
return FM_ERR_OK;
}
EFmErrorT fm_clear_all(fm_ent_inst_t *inst_id) {
CFmMutexGuard m(getAPIMutex());
if (!fm_lib_reconnect()) return FM_ERR_NOCONNECT;
fm_buff_t buff;
buff.clear();
EFmErrorT erc = fm_msg_utils_prep_requet_msg(buff, EFmDeleteFaults,
(*inst_id), sizeof(*inst_id));
if (erc!=FM_ERR_OK) return erc;
if (m_client.write_packet(buff)) {
if (!m_client.read_packet(buff)) {
m_connected = false;
FM_ERROR_LOG("Read ERR: return FM_ERR_NOCONNECT");
return FM_ERR_NOCONNECT;
}
HANDLE_SERVER_RC(ptr_to_hdr(buff));
} else {
m_connected = false;
FM_ERROR_LOG("Write ERR: return FM_ERR_NOCONNECT");
return FM_ERR_NOCONNECT;
}
return FM_ERR_OK;
}
EFmErrorT fm_get_fault(AlarmFilter *filter, SFmAlarmDataT *alarm ) {
CFmMutexGuard m(getAPIMutex());
if (!fm_lib_reconnect()) return FM_ERR_NOCONNECT;
fm_check_thread_pending_request();
fm_buff_t buff;
buff.clear();
EFmErrorT erc = fm_msg_utils_prep_requet_msg(buff, EFmGetFault,
filter,sizeof(*filter));
if (erc!=FM_ERR_OK) return erc;
if (m_client.write_packet(buff)) {
if (!m_client.read_packet(buff)) {
m_connected = false;
return FM_ERR_NOCONNECT;
}
HANDLE_SERVER_RC(ptr_to_hdr(buff));
CHECK_RESPONSE(ptr_to_hdr(buff),SFmAlarmDataT);
SFmAlarmDataT * data = (SFmAlarmDataT * ) ptr_to_data(buff);
*alarm = *data;
} else {
m_connected = false;
return FM_ERR_NOCONNECT;
}
return FM_ERR_OK;
}
EFmErrorT fm_get_faults(fm_ent_inst_t *inst_id,
SFmAlarmDataT *alarm,
unsigned int *max_alarms_to_get) {
CFmMutexGuard m(getAPIMutex());
if (!fm_lib_reconnect()) return FM_ERR_NOCONNECT;
fm_check_thread_pending_request();
fm_buff_t buff;
buff.clear();
EFmErrorT erc = fm_msg_utils_prep_requet_msg(buff, EFmGetFaults,
(*inst_id),sizeof(*inst_id));
if (erc!=FM_ERR_OK) return erc;
if (m_client.write_packet(buff)) {
if(!m_client.read_packet(buff)) {
m_connected = false;
return FM_ERR_NOCONNECT;
}
if (ptr_to_hdr(buff)->msg_rc != FM_ERR_OK) {
*max_alarms_to_get = 0;
EFmErrorT rc = (EFmErrorT)ptr_to_hdr(buff)->msg_rc;
return rc;
}
uint32_t pkt_size = ptr_to_hdr(buff)->msg_size;
if (pkt_size < sizeof(uint32_t)) {
FM_ERROR_LOG("Received invalid pkt size: %u\n",pkt_size );
m_connected = false;
return FM_ERR_COMMUNICATIONS;
}
pkt_size-=sizeof(uint32_t);
char *dptr = (char*)ptr_to_data(buff);
uint32_t *len = (uint32_t*)dptr;
dptr+=sizeof(uint32_t);
if (*max_alarms_to_get < *len) {
return FM_ERR_NOT_ENOUGH_SPACE;
}
if (pkt_size < (*len*sizeof(SFmAlarmDataT))) {
return FM_ERR_COMMUNICATIONS;
}
*max_alarms_to_get = *len;
memcpy(alarm,dptr,pkt_size);
} else {
m_connected = false;
return FM_ERR_NOCONNECT;
}
return FM_ERR_OK;
}
EFmErrorT fm_get_faults_by_id(fm_alarm_id *alarm_id,
SFmAlarmDataT *alarm,
unsigned int *max_alarms_to_get) {
CFmMutexGuard m(getAPIMutex());
if (!fm_lib_reconnect()) return FM_ERR_NOCONNECT;
fm_check_thread_pending_request();
fm_buff_t buff;
buff.clear();
EFmErrorT erc = fm_msg_utils_prep_requet_msg(buff, EFmGetFaultsById,
(*alarm_id), sizeof(*alarm_id));
if (erc!=FM_ERR_OK) return erc;
if (m_client.write_packet(buff)) {
if (!m_client.read_packet(buff)) {
m_connected = false;
return FM_ERR_NOCONNECT;
}
if (ptr_to_hdr(buff)->msg_rc != FM_ERR_OK){
*max_alarms_to_get = 0;
EFmErrorT rc = (EFmErrorT)ptr_to_hdr(buff)->msg_rc;
return rc;
}
uint32_t pkt_size = ptr_to_hdr(buff)->msg_size;
if (pkt_size < sizeof(uint32_t)) {
FM_ERROR_LOG("Received invalid pkt size: %u\n",pkt_size );
m_connected = false;
return FM_ERR_COMMUNICATIONS;
}
pkt_size-=sizeof(uint32_t);
char *dptr = (char*)ptr_to_data(buff);
uint32_t *len = (uint32_t*)dptr;
dptr+=sizeof(uint32_t);
if (*max_alarms_to_get < *len) {
return FM_ERR_NOT_ENOUGH_SPACE;
}
if (pkt_size < (*len*sizeof(SFmAlarmDataT)) ) {
return FM_ERR_COMMUNICATIONS;
}
*max_alarms_to_get = *len;
memcpy(alarm,dptr,pkt_size);
} else {
m_connected = false;
return FM_ERR_NOCONNECT;
}
return FM_ERR_OK;
}
/*
* APIs that enqueue the request and return ok for acknowledgment.
* A backgroup thread will pick up the request and send it to the FM Manager
*/
EFmErrorT fm_set_fault_async(const SFmAlarmDataT *alarm, fm_uuid_t *uuid) {
if ( !fm_lib_thread()) return FM_ERR_RESOURCE_UNAVAILABLE;
CHECK_LIST_FULL(GetListOfFmRequests());
fm_uuid_t id;
fm_buff_t buff;
buff.clear();
fm_uuid_create(id);
EFmErrorT erc = fm_msg_utils_prep_requet_msg(buff, EFmCreateFault,
alarm, sizeof(*alarm));
if (erc != FM_ERR_OK) return erc;
memcpy(ptr_to_data(buff), id, sizeof(fm_uuid_t)-1);
FM_INFO_LOG("Enqueue raise alarm request: UUID (%s) alarm id (%s) instant id (%s)",
id, alarm->alarm_id, alarm->entity_instance_id);
enqueue(buff);
if (uuid != NULL) {
memcpy(*uuid,id,sizeof(*uuid)-1);
}
return FM_ERR_OK;
}
EFmErrorT fm_clear_fault_async(AlarmFilter *filter) {
if ( !fm_lib_thread()) return FM_ERR_RESOURCE_UNAVAILABLE;
CHECK_LIST_FULL(GetListOfFmRequests());
fm_buff_t buff;
buff.clear();
EFmErrorT erc = fm_msg_utils_prep_requet_msg(buff, EFmDeleteFault,
filter, sizeof(*filter));
if (erc!=FM_ERR_OK) return erc;
FM_INFO_LOG("Enqueue clear alarm request: alarm id (%s), instant id (%s)",
filter->alarm_id, filter->entity_instance_id);
enqueue(buff);
return FM_ERR_OK;
}
EFmErrorT fm_clear_all_async(fm_ent_inst_t *inst_id) {
if ( !fm_lib_thread()) return FM_ERR_RESOURCE_UNAVAILABLE;
CHECK_LIST_FULL(GetListOfFmRequests());
fm_buff_t buff;
buff.clear();
EFmErrorT erc = fm_msg_utils_prep_requet_msg(buff, EFmDeleteFaults,
(*inst_id), sizeof(*inst_id));
if (erc!=FM_ERR_OK) return erc;
FM_INFO_LOG("Enqueue clear all alarm request: instant id (%s)", *inst_id);
enqueue(buff);
return FM_ERR_OK;
}
}