
Titanium Server
Server Group Messaging

Host-Guest Message-Based API

&
Guest Reference Implementation

Release: 15.12

01/14/2016

WIND RIVER

[Specification of the Host-Guest Server Group Messaging APIs – 16.01.]

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 1 -

Copyright Notice

Copyright (c) 2013-2016, Wind River Systems, Inc.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1) Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2) Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3) Neither the name of Wind River Systems nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 2 -

Table of Contents

Introduction ... 3
Host – Guest Server Group Messaging API ... 4

Message Types and Semantics.. 5
Virtio Serial Device .. 7

JSON Message Syntax .. 9
Base JSON Message Layer – Syntax .. 10
Application JSON Message Layer – Syntax ... 11

Examples ... 15
Reference Implementation of Guest Server Group Messaging .. 17

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 3 -

Introduction

Titanium Server implements a Host-to-Guest Server Group Messaging API to provide a simple

low-bandwidth datagram messaging and notification service for servers that are part of the same

server group. This messaging channel is available regardless of whether IP networking is

functional within the server, and it requires no knowledge within the server about the other

members of the group. This document contains the specification for this messaging-based API.

Also included in this document is an overview of the Titanium Server ‘Server Group Messaging’

SDK Module which provides a Linux-based reference implementation of the Guest-side software

for implementing this Messaging-based API in the Guest. The SDK Module provides source

code and make/build instructions which can be used strictly as reference or built and included ‘as

is’ in your Guest image. Full build, install and usage instructions can be found in the README

files included in the SDK Module. This document simply provides an overview of the reference

implementation.

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 4 -

Host – Guest Server Group Messaging API

Titanium Server implements a simple Host-to-Guest Server Group Messaging API to provide a

simple low-bandwidth datagram messaging and notification service for servers that are part of

the same server group. This messaging channel is available regardless of whether IP networking

is functional within the server, and it requires no knowledge within the server about the other

members of the group.

The Host-to-Guest Server Group Messaging API is a message-based API using a JSON-

formatted application messaging layer on top of a ‘virtio serial device’ between QEMU on the

host and the Guest VM. JSON formatting provides a simple, humanly readable messaging

format which can be easily parsed and formatted using any high level programming language

being used in the Guest VM (e.g. C, Python, Java, etc.). Use of the ‘virtio serial device’ provides

a simple, direct communication channel between host and guest which is independent of the

Guest’s L2/L3 networking.

Figure 1 – Titanium Server Host-Guest Server Group Messaging API

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 5 -

Message Types and Semantics

For the Server Group Messaging API, there are four message types; Server Status

Query/Response Messages, Asynchronous Server Status Change Notifications, Server Broadcast

Messages and a Nack Message.

 Status Query (Guest Host)

o This allows a server (Guest) to query the current state of all servers within its

server group, including itself,

 Status Response and Status Response Done (Host Guest)

o This is the Status Response from the Titanium Server Host containing the current

state of all servers within the Guest’s server group, including this Guest,

o This is a multiple message response with each response containing the status of a

single server, followed by a final response (status response done) with no data,

o Each message of the multiple message response has the transaction number (seq)

of the status query request that it is related to,

 Notification Message (Host Guest)

o This provides the server (Guest) with information about changes to the state of

other servers within the server group,

o Each notification message contains the status of a single server,

 Broadcast Message (Guest Host) (Host Guest)

o This allows a server (Guest) to send a datagram (thru the Host, with a size of up to

3050 bytes) to all other servers (Guests) within its server group,

 the payload portion of the message, ‘data’, can be formatted as desired by

the Guest, however it must be a null-terminated string without embedded

newlines,

 the source field of the message is a unique, although opaque, address

string representing the server (Guest) that sent the message.

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 6 -

 Nack (Host Guest)

o This is a message sent from the Host to the Guest when the Host receives a

message with incorrect syntax,

o It contains the message type of the original (incorrect) message and a log_msg

describing the error,

o This allows the Guest Application developer to debug issues when developing the

Guest-side API code.

This service is not intended for high bandwidth or low-latency operations. It is best-effort, not

reliable. Applications should do end-to-end acks and retries if they care about reliability.

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 7 -

Virtio Serial Device

The transport layer of the Host-Guest Server Group Messaging API is a ‘virtio serial device’

(also known as a ‘vmchannel’) between QEMU (on the host) and the Guest VM. Device

emulation in QEMU presents a virtio-pci device to the Guest, and a Guest Driver presents a char

device interface to Guest userspace applications. This provides a simple transport mechanism

for communication between the host userspace and the guest userspace. I.e. it is completely

independent of the networking stack of the Guest, and is available very early in the boot

sequence of the Guest.

This is a standard Linux QEMU/KVM feature. The Guest API for interfacing with the ‘virtio

serial device’ can be found at http://www.linux-kvm.org/page/Virtio-serial_API . Examples of

Guest code for opening, reading, writing, etc. from/to a ‘virtio serial device’ can also be found in

the source code of the Titanium Server ‘Server Group Messaging SDK Module’. This SDK

Module provides a Linux-based reference implementation of the Guest-side software for

implementing the Guest Serer Group Messaging API. Generally communicating with a ‘virtio

serial device’ is very similar to communicating via a pipe, or a SOCK_STREAM socket.

There are however a few additional considerations to be aware of when using ‘virtio serial

devices’:

 only one process at a time can open the device in the Guest,

 read() returns 0, if the Host is not connected to the device,

 write() blocks or returns -1 with error set to EAGAIN, if the Host is not connected,

 poll() will always set POLLHUP in revents when the Host connection is down.

o This means that the only way to get event-driven notification of connection is to

register for SIGIO. However, then a SIGIO event will occur every time the

device becomes readable. The work-around is to selectively block SIGIO as long

as the link is up is thought to be up, then unblock it on connection loss so a

notification occurs when the link comes back.

 If the Host disconnects the Guest should still process any buffered messages from the

device,

 Message boundaries are not preserved, the Guest needs to handle message fragment

reassembly. Multiple messages can be returned in one read() call, as well as buffers

beginning and ending with partial messages. This is hard to get perfect; one can study the

host_guest_msg.c code in the Titanium Server Guest Server Group Messaging

SDK Module for ideas on how this can be handled.

http://www.linux-kvm.org/page/Virtio-serial_API

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 8 -

The QEMU/KVM created by Titanium Server in order to host a Guest VM is created with a

‘virtio serial device’ named:

 /dev/virtio-port/cgcs.messaging

for general Titanium Server Host – to – Guest VM messaging (e.g. Host-Guest Server Group

Messaging as well as other Host-Guest Messaging discussed in other Titanium Server – Guest

API documents).

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 9 -

JSON Message Syntax

The upper layer messaging format being used is ‘Line Delimited JSON Format’. I.e. a ‘\n’

character is used to identify message boundaries in the stream of data to/from the virtio serial

device; specifically a ‘\n’ character is inserted at the start and end of the JSON Object

representing a Message.

\n{key:value,key:value,…}\n

Note that key and values must NOT contain ‘\n’ characters.

The upper layer messaging format is actually structured as a hierarchical JSON format

containing a Base JSON Message Layer and an Application JSON Message Layer:

 the Base Layer provides the ability to multiplex different groups of message types on top

of a single ‘virtio serial device’

e.g.

o resource scaling,

o server group messaging,

o etc.

and

 the Application Layer provides the specific message types and fields of a particular group

of message types.

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 10

-

Base JSON Message Layer – Syntax

Again, the Base Layer provides the ability to multiplex different groups of message types on top

of a single ‘virtio serial device’, e.g. resource scaling versus server group messaging etc.

Host – to – Guest Messages

Key Value Optionality* Example value

(for Server Group Messaging)

Description

“version” integer M 1 Version of the Base Layer

Messaging

“source_addr” string M Opaque string representing

the host-side address of the

message.

“dest_addr” string M “cgcs.server_grp” The Guest-side addressing of

the message; specifically the

Message Group Type

“data” JSON

Formatted

String

M See the following section on Application

Layer JSON Message Layer – Syntax

for Server Group Messaging.

Application layer JSON

message whose schema is

dependent on the particular

Message Group Type

 M: Mandatory; O: Optional

Guest – to – Host Messages

Guest – to – Host Messages, from a Base Layer perspective, are identical to Host – to – Guest

Messages except for swapped semantics of source_addr and dest_addr.

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 11

-

Application JSON Message Layer – Syntax

Again the Application Layer provides the specific message types and fields of a particular group

of message types; in this case the messages of Server Group Messaging.

Guest – to – Host Messages

Status Query

Key Value Optionality* Example value Description

“version” integer M 1 Version of the interface.

“msg_type” string M “status_query"

Type of the message.

“seq” integer M Transaction number for the query;

corresponding status_response

and status_response_done

messages will have a matching

transaction number.

This should be incremented on

each status_query sent by Guest.

 M: Mandatory; O: Optional; (Condition)

Broadcast Message

Key Value Optionality* Example value Description

“version” integer M 1 Version of the interface

“msg_type” string M “broadcast"

Type of the message.

“data” string M Message content; can be

formatted as desired by the Guest,

however it must be a null-

terminated string without

embedded newlines.

 M: Mandatory; O: Optional; (Condition)

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 12

-

Host – to – Guest Messages

Status Response

Key Value Optionality* Example value Description

“version” integer M 1 Version of the interface.

“msg_type” string M “status_response"

Type of the message.

“seq” integer M Transaction number that the

response belongs to.

“data” string M see following info

following table

The JSON formatted field

containing the same contents as

the normal notification that gets

sent out by OpenStack’s

notification service; see example

below.

 M: Mandatory; O: Optional; (Condition)

Example contents of ‘data’ field containing status of a particular server:

(the same contents as the normal notification that gets sent out by OpenStack’s notification

service)

{

 "state_description":"",

 "availability_zone":null,

 "terminated_at":"",

 "ephemeral_gb":0,

 "instance_type_id":10,

 "deleted_at":"",

 "reservation_id":"r-ed4i0c72",

 "instance_id":"4c074ce9-cbde-4040-9fdb-84b36168916b",

 "display_name":"jd_af_vm1",

 "hostname":"jd-af-vm1",

 "state":"active",

 "progress":"",

 "launched_at":"2015-11-26T14:33:03.000000",

 "metadata":{

 },

 "node":"compute-0",

 "ramdisk_id":"",

 "access_ip_v6":null,

 "disk_gb":1,

 "access_ip_v4":null,

 "kernel_id":"",

 "host":"compute-0",

 "user_id":"369b0103310d4a6bbf43ed389aac211d",

 "image_ref_url":"http:\/\/127.0.0.1:9292\/images\/32b386e1-5a21-47c4-

a04a-57910e7b0fc8",

 "cell_name":"",

 "root_gb":1,

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 13

-

 "tenant_id":"98b5838aa73c40728341336852b07772",

 "created_at":"2015-11-26 14:32:51.431455+00:00",

 "memory_mb":512,

 "instance_type":"jd1cpu",

 "vcpus":1,

 "image_meta":{

 "min_disk":"1",

 "container_format":"bare",

 "min_ram":"0",

 "disk_format":"qcow2",

 "base_image_ref":"32b386e1-5a21-47c4-a04a-57910e7b0fc8"

 },

 "architecture":null,

 "os_type":null,

 "instance_flavor_id":"101"

 }

Status Response Done

Key Value Optionality* Example value Description

“version” integer M 1 Version of the interface.

“msg_type” string M “status_response_done"

Type of the message.

“seq” integer M Transaction number that the

response belongs to.

 M: Mandatory; O: Optional; (Condition)

Notification Message

Key Value Optionality* Example value Description

“version” integer M 1 Version of the interface.

“msg_type” string M “notification"

Type of the message.

“data” string M see contents of ‘data’

field documented for

status_response

The JSON formatted output of the

response to the Compute API

GET

/<version>/<tenant_id>/servers/<

server_id>

(see Compute API

documentation for exact contents

of response)

 M: Mandatory; O: Optional; (Condition)

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 14

-

Broadcast Message

Key Value Optionality* Example value Description

“version” integer M 1 Version of the interface

“msg_type” string M “broadcast"

Type of the message.

“source_instance” string M The unique, although opaque,

address string representing the

server (Guest) that sent the

message.

“data” string M Message content; can be

formatted as desired by the Guest,

however it must be a null-

terminated string without

embedded newlines.

 M: Mandatory; O: Optional; (Condition)

Nack

Key Value Optionality* Example value Description

“version” integer M 2 Version of the interface

“msg_type” “nack” M “nack” The type of message.

“orig_msg_type” string M “broadcast” The type of message that host

previous received from guest.

“log_msg” string M “failed to parse

version”

Error message

 M: Mandatory; O: Optional; (Condition)

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 15

-

Examples

Examples of ‘full’ Server Group Messaging JSON messages, containing the Application JSON

Message Layer encapsulated inside the Base JSON Messaging Layer.

Status Query:

Guest sends a query to TiS for status of all servers in Guest’s Server Group:

\n{"version":1,"source_addr":"cgcs.server_grp”,"dest_addr":"cgcs.server_grp”,

"data":{"version":1,"msg_type":"status_query",:“seq”:1}}\n

TiS responds with the status of a server in the Guest’s Server Group;

one or more messages, each containing the status of one server in the Guest’s Server

Group:

\n{"version":1,"source_addr":"cgcs.server_grp”,"dest_addr":"cgcs.server

_grp”,"data":{"version":1,"msg_type":"status_response",“seq”:1,“data”:{

"state_description": "", "availability_zone": null, "terminated_at":

"", "ephemeral_gb": 0, "instance_type_id": 10, "deleted_at": "",

"reservation_id": "r-ed4i0c72", "instance_id": "4c074ce9-cbde-4040-

9fdb-84b36168916b", "display_name": "jd_af_vm1", "hostname": "jd-af-

vm1", "state": "active", "progress": "", "launched_at": "2015-11-

26T14:33:03.000000", "metadata": { }, "node": "compute-0",

"ramdisk_id": "", "access_ip_v6": null, "disk_gb": 1, "access_ip_v4":

null, "kernel_id": "", "host": "compute-0", "user_id":

"369b0103310d4a6bbf43ed389aac211d", "image_ref_url":

"http:\/\/127.0.0.1:9292\/images\/32b386e1-5a21-47c4-a04a-

57910e7b0fc8", "cell_name": "", "root_gb": 1, "tenant_id":

"98b5838aa73c40728341336852b07772", "created_at": "2015-11-26

14:32:51.431455+00:00", "memory_mb": 512, "instance_type": "jd1cpu",

"vcpus": 1, "image_meta": { "min_disk": "1", "container_format":

"bare", "min_ram": "0", "disk_format": "qcow2", "base_image_ref":

"32b386e1-5a21-47c4-a04a-57910e7b0fc8" }, "architecture": null,

"os_type": null, "instance_flavor_id": "101" }}}\n

TiS responds with response done for the current outstanding query request; with no data:

\n{"version":1,"source_addr":"cgcs.server_grp”,"dest_addr":"cgcs.server

_grp”,"data":{"version":1,"msg_type":"status_response_done",“seq”:1}}\n

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 16

-

Notification:

A notification of a server state change from TiS:

\n{"version":1,"source_addr":"cgcs.server_grp”,"dest_addr":"cgcs.server_grp”,

"data":{"version":1,"msg_type":"notification",“data”:{ "state_description":

"", "availability_zone": null, "terminated_at": "", "ephemeral_gb": 0,

"instance_type_id": 10, "deleted_at": "", "reservation_id": "r-ed4i0c72",

"instance_id": "4c074ce9-cbde-4040-9fdb-84b36168916b", "display_name":

"jd_af_vm1", "hostname": "jd-af-vm1", "state": "active", "progress": "",

"launched_at": "2015-11-26T14:33:03.000000", "metadata": { }, "node":

"compute-0", "ramdisk_id": "", "access_ip_v6": null, "disk_gb": 1,

"access_ip_v4": null, "kernel_id": "", "host": "compute-0", "user_id":

"369b0103310d4a6bbf43ed389aac211d", "image_ref_url":

"http:\/\/127.0.0.1:9292\/images\/32b386e1-5a21-47c4-a04a-57910e7b0fc8",

"cell_name": "", "root_gb": 1, "tenant_id":

"98b5838aa73c40728341336852b07772", "created_at": "2015-11-26

14:32:51.431455+00:00", "memory_mb": 512, "instance_type": "jd1cpu", "vcpus":

1, "image_meta": { "min_disk": "1", "container_format": "bare", "min_ram":

"0", "disk_format": "qcow2", "base_image_ref": "32b386e1-5a21-47c4-a04a-

57910e7b0fc8" }, "architecture": null, "os_type": null, "instance_flavor_id":

"101" }}}\n

Broadcast:

A broadcast message to/from another server:

\n{"version":1,"source_addr":"cgcs.server_grp”,"dest_addr":"cgcs.server_grp”,

"data":{"version":1,"msg_type":"broadcast",“source_instance”:”instance-

00000001”,“data”:”Hello World”}}\n

Nack:

A Nack from TiS for an invalid broadcast message sent from Guest.

\n{"version":1,"source_addr":"cgcs.server_grp”,"dest_addr":"cgcs.server_grp”,

"data":{"version":1,"msg_type":"nack","orig_msg_type":"broadcast","log_msg":"

failed to parse version"}}\n

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 17

-

Reference Implementation of Guest Server Group Messaging

This section provides an overview of the Linux-based reference implementation of the Guest-

side software for implementing this Host-to-Guest Server Group Messaging API in the Guest.

This reference implementation can be found in the Titanium Server Guest Server Group

Messaging SDK Module. This Module provides source code and make/build instructions which

can be used strictly as reference or built and included ‘as is’ in your Guest image. Full build,

install and usage instructions can be found in the README files included in the SDK Module.

This section simply provides an overview of the reference implementation.

The diagram below provides the architecture diagram of the reference implementation:

Figure 2 – Reference Implementation Architecture for Guest Server Group Messaging

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 18

-

Where:

 A Guest Agent Process implements the Base JSON Messaging Layer.

This includes:

o opening/reading,/writing and general management of the virtio serial device

between the Guest and the Host,

o parsing/processing/formatting of the Base JSON Messaging Layer of the Guest-

Host interface, where processing of the messages involves:

 the multiplexing/de-multiplexing of Application Layer messages to/from

registered Guest Application Layer Agents; in this particular case a Guest

Application Process responsible for handling Server Group Messaging for

the Guest,

 the interface between the Guest Agent Process and the Guest Application

Process responsible for Server Group Messaging for the Guest:

 is a message-based interface;

 specifically a JSON Messaging Layer over a UNIX Datagram

socket,

o where the UNIX Socket Address is the Message Group

Type (cgcs.server_grp in this particular case) specified

within the Base JSON Messaging Layer and

o where the JSON Message consists of the ‘data’ field

contents specified within the Base JSON Messaging Layer.

o NOTE

 The implementation files for the Guest Agent Process within the Titanium

Server Guest Server Group Messaging SDK Module are:

 misc.h, guest_host_msg.h, host_guest_msg_type.h,

 guest_agent.c, host_guest_msg.c, lib_guest_host_msg.c

 A Server Group Messaging Lib which provides a C-based procedural API for a Guest

Application Process to interface with the Guest Agent Process.

Specifically this library implements:

o the interface described above; a JSON Messaging Layer over a UNIX Datagram

socket.

 where the UNIX Socket Address is the Message Group Type

(cgcs.server_grp in this particular case) specified within the Base JSON

Messaging Layer and

 the JSON Message consists of the ‘data’ field contents specified within the

Base JSON Messaging Layer.

o with a C-based procedural API.

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 19

-

o NOTE

 the definition and implementation of the Server Group Messaging Lib

within the Titanium Server Guest Server Group Messaging SDK Module

are:

 server_group.h and server_group.c

 server_group_app.c (a sample usage of the API)

server_group.h:

/* Function signature for the server group broadcast messaging callback function.

 * source_instance is a null-terminated string of the form "instance-xxxxxxxx".

 * The message contents are entirely up to the sender of the message.

 */

typedef void (*sg_broadcast_msg_handler_t)(const char *source_instance,

 const char *msg, unsigned short msglen);

/* Function signature for the server group notification callback function. The

 * message is basically the notification as sent out by nova with some information

 * removed as not relevant. The message is not null-terminated, though it is

 * a JSON representation of a python dictionary.

 */

typedef void (*sg_notification_msg_handler_t)(const char *msg, unsigned short msglen);

/* Function signature for the server group status callback function. The

 * message is a JSON representation of a list of dictionaries, each of which

 * corresponds to a single server. The message is not null-terminated.

 */

typedef void (*sg_status_msg_handler_t)(const char *msg, unsigned short msglen);

/* Get error message from most recent library call that returned an error. */

char *sg_get_error();

/* Allocate socket, set up callbacks, etc. This must be called once before

 * any other API calls.

 *

 * Returns a socket that must be monitored for activity using select/poll/etc.

 * A negative return value indicates an error of some kind.

 */

int init_sg(sg_broadcast_msg_handler_t broadcast_handler,

 sg_notification_msg_handler_t notification_handler,

 sg_status_msg_handler_t status_handler);

/* This should be called when the socket becomes readable. This may result in

 * callbacks being called. Returns 0 on success.

 * A negative return value indicates an error of some kind.

 */

int process_sg_msg();

/* max msg length for a broadcast message */

#define MAX_MSG_DATA_LEN 3050

/* Send a server group broadcast message. Returns 0 on success.

Wind River, 500 Wind River Way, Alameda, CA. U.S.A., 94501 tel: 800-545-WIND fax: 510.749.2010 www.windriver.com - 20

-

 * A negative return value indicates an error of some kind.

 */

int sg_msg_broadcast(const char *msg);

/* Request a status update for all servers in the group.

 * Returns 0 if the request was successfully sent.

 * A negative return value indicates an error of some kind.

 *

 * A successful response will cause the status_handler callback

 * to be called.

 *

 * If a status update has been requested but the callback has not yet

 * been called this may result in the previous request being cancelled.

 */

int sg_request_status();

