Added overview document for meteos
Adding the overview document and changed a few documents to make the docs better. Change-Id: Ia1fd7f037f85cc1363678f16232c1d9371fdb292 Partial-Implements: blueprint meteos-docs
This commit is contained in:
parent
560ed9022d
commit
c3c46f41dd
38
README.rst
38
README.rst
@ -1,27 +1,41 @@
|
|||||||
|
========================
|
||||||
|
Team and repository tags
|
||||||
|
========================
|
||||||
|
|
||||||
|
.. image:: http://governance.openstack.org/badges/mistral.svg
|
||||||
|
:target: http://governance.openstack.org/reference/tags/index.html
|
||||||
|
|
||||||
======
|
======
|
||||||
Meteos
|
Meteos
|
||||||
======
|
======
|
||||||
|
|
||||||
|
.. image:: https://img.shields.io/pypi/v/meteos.svg
|
||||||
|
:target: https://pypi.python.org/pypi/meteos/
|
||||||
|
:alt: Latest Version
|
||||||
|
|
||||||
|
.. image:: https://img.shields.io/pypi/dm/meteos.svg
|
||||||
|
:target: https://pypi.python.org/pypi/meteos/
|
||||||
|
:alt: Downloads
|
||||||
|
|
||||||
You have come across an OpenStack Machine Learning service. It has
|
You have come across an OpenStack Machine Learning service. It has
|
||||||
identified itself as "Meteos." It was abstracted from the Manila
|
identified itself as "Meteos." It was abstracted from the Manila
|
||||||
project.
|
project.
|
||||||
|
|
||||||
* Wiki: https://wiki.openstack.org/Meteos
|
Project Resources
|
||||||
* Developer docs: http://docs.openstack.org/developer/meteos
|
-----------------
|
||||||
|
|
||||||
Getting Started
|
* `Meteos Official Documentation <http://docs.openstack.org/developer/meteos/>`_
|
||||||
---------------
|
|
||||||
|
|
||||||
If you'd like to run from the master branch, you can clone the git repo:
|
* Project status, bugs, and blueprints are tracked on
|
||||||
|
`Launchpad <https://launchpad.net/meteos/>`_
|
||||||
|
|
||||||
git clone https://github.com/openstack/meteos.git
|
* Additional resources are linked from the project
|
||||||
|
`Wiki <https://wiki.openstack.org/wiki/Meteos/>`_ page
|
||||||
|
|
||||||
For developer information please see
|
* Apache License Version 2.0 http://www.apache.org/licenses/LICENSE-2.0
|
||||||
`HACKING.rst <https://github.com/openstack/meteos/blob/master/HACKING.rst>`_
|
|
||||||
|
|
||||||
You can raise bugs here http://bugs.launchpad.net/meteos
|
* `Source Code <https://github.com/openstack/meteos/>`_
|
||||||
|
|
||||||
Python client
|
* For developer information please see `HACKING.rst <https://github.com/openstack/meteos/blob/master/HACKING.rst>`_
|
||||||
-------------
|
|
||||||
|
|
||||||
https://github.com/openstack/python-meteosclient.git
|
* `Python Client <https://github.com/openstack/python-meteosclient.git>`_
|
||||||
|
@ -1,50 +1,20 @@
|
|||||||
..
|
Welcome to Meteos's documentation!
|
||||||
Copyright 2010-2012 United States Government as represented by the
|
==================================
|
||||||
Administrator of the National Aeronautics and Space Administration.
|
|
||||||
All Rights Reserved.
|
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
||||||
not use this file except in compliance with the License. You may obtain
|
|
||||||
a copy of the License at
|
|
||||||
|
|
||||||
http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
|
|
||||||
Unless required by applicable law or agreed to in writing, software
|
|
||||||
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
||||||
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
||||||
License for the specific language governing permissions and limitations
|
|
||||||
under the License.
|
|
||||||
|
|
||||||
Welcome to Meteos's developer documentation!
|
|
||||||
============================================
|
|
||||||
|
|
||||||
Meteos is an OpenStack project to provide "Machine Learning as a service".
|
Meteos is an OpenStack project to provide "Machine Learning as a service".
|
||||||
|
Meteos allows users to analyze huge amount of data and predict a value by data
|
||||||
|
mining and machine learning algorithms. Meteos create a workspace of Machine
|
||||||
|
Learning via sahara spark plugin and manage some resources and jobs regarding
|
||||||
|
Machine Learning.
|
||||||
|
|
||||||
* **Component based architecture**: Quickly add new behaviors
|
Overview
|
||||||
* **Highly available**: Scale to very serious workloads
|
========
|
||||||
* **Fault-Tolerant**: Isolated processes avoid cascading failures
|
|
||||||
* **Recoverable**: Failures should be easy to diagnose, debug, and rectify
|
|
||||||
* **Open Standards**: Be a reference implementation for a community-driven api
|
|
||||||
* **API Compatibility**: Meteos strives to provide API-compatible with popular systems like Amazon EC2
|
|
||||||
|
|
||||||
This documentation is generated by the Sphinx toolkit and lives in the source
|
|
||||||
tree. Additional draft and project documentation on Meteos and other components of OpenStack can
|
|
||||||
be found on the `OpenStack wiki`_. Cloud administrators, refer to `docs.openstack.org`_.
|
|
||||||
|
|
||||||
.. _`OpenStack wiki`: http://wiki.openstack.org
|
|
||||||
.. _`docs.openstack.org`: http://docs.openstack.org
|
|
||||||
|
|
||||||
|
|
||||||
Developer Docs
|
|
||||||
==============
|
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
:maxdepth: 1
|
:maxdepth: 1
|
||||||
|
|
||||||
|
overview
|
||||||
architecture
|
architecture
|
||||||
devref/index
|
|
||||||
man/index
|
|
||||||
api/autoindex
|
|
||||||
|
|
||||||
Admin Docs
|
Admin Docs
|
||||||
==========
|
==========
|
||||||
|
36
doc/source/overview.rst
Normal file
36
doc/source/overview.rst
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
Meteos Overview
|
||||||
|
==============
|
||||||
|
|
||||||
|
What is Meteos?
|
||||||
|
~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Meteos is an OpenStack project to provide "Machine Learning as a service".
|
||||||
|
|
||||||
|
* **Component based architecture:** Quickly add new behaviors
|
||||||
|
* **Highly available:** Scale to very serious workloads
|
||||||
|
* **Fault-Tolerant:** Isolated processes avoid cascading failures
|
||||||
|
* **Recoverable:** Failures should be easy to diagnose, debug, and rectify
|
||||||
|
* **Open Standards:** Be a reference implementation for a community-driven api
|
||||||
|
* **API Compatibility:** Meteos strives to provide API-compatible with popular systems like Amazon EC2
|
||||||
|
|
||||||
|
|
||||||
|
Main use cases
|
||||||
|
~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Machine Learning consists of the following phases.
|
||||||
|
|
||||||
|
* **Learning Phase** - Analyze huge amounts of data and create a Prediction Model
|
||||||
|
* **Prediction Phase** - Predict a value according to the input value by using Prediction Model
|
||||||
|
|
||||||
|
Use case in Learning Phase
|
||||||
|
--------------------------
|
||||||
|
|
||||||
|
* Upload Raw Data - Upload a raw data to Object Storage
|
||||||
|
* Parse Raw Data - Parse a raw data to enable MLllib (Apache Spark's scalable
|
||||||
|
machine learning library) to handle it. Users are allowed to parse the parsed data again.
|
||||||
|
* Create Prediction Model - Create a Prediction Model by using MLlib
|
||||||
|
|
||||||
|
Use case in Prediction Phase
|
||||||
|
----------------------------
|
||||||
|
|
||||||
|
* Predict - Input any value and retrieve predicted value
|
Loading…
x
Reference in New Issue
Block a user