This adds an entry about collectors to the developer documentation. Some information about collectors has been moved from the admin to the developer documentation. Change-Id: I2423761b9f7a672fe837d5d5954473301d936ba3 Story: 2004179 Task: 28514
5.2 KiB
Collector
Data format
Internally, CloudKitty's data format is a bit more detailled than what can be found in the architecture documentation.
The internal data format is the following:
{
"bananas": [
{
"vol": {
"unit": "banana",
"qty": 1
},
"rating": {
"price": 1
},
"groupby": {
"xxx_id": "hello",
"yyy_id": "bye",
},
"metadata": {
"flavor": "chocolate",
"eaten_by": "gorilla",
},
}
],
}However, developers implementing a collector don't need to format the data themselves, as there are helper functions for these matters.
Implementation
Each collector must implement the following class:
cloudkitty.collector.BaseCollector
The retrieve method of the BaseCollector
class is called by the orchestrator. This method calls the
fetch_all method of the child class.
To create a collector, you need to implement at least the
fetch_all method.
Data collection
Collectors must implement a fetch_all method. This
method is called for each metric type, for each scope, for each collect
period. It has the following prototype:
cloudkitty.collector.BaseCollector
This method is supposed to return a list of objects formatted by
CloudKittyFormatTransformer.
Example code of a basic collector:
from cloudkitty.collector import BaseCollector
class MyCollector(BaseCollector):
def __init__(self, **kwargs):
super(MyCollector, self).__init__(**kwargs)
def fetch_all(self, metric_name, start, end,
project_id=None, q_filter=None):
data = []
for CONDITION:
# do stuff
data.append(self.t_cloudkitty.format_item(
groupby, # dict
metadata, # dict
unit, # str
qty=qty, # int / float
))
return dataproject_id can be misleading, as it is a legacy name. It
contains the ID of the current scope. The attribute corresponding to the
scope is specified in the configuration, under
[collect]/scope_key. Thus, all queries should filter based
on this attribute. Example:
from oslo_config import cfg
from cloudkitty.collector import BaseCollector
CONF = cfg.CONF
class MyCollector(BaseCollector):
def __init__(self, **kwargs):
super(MyCollector, self).__init__(**kwargs)
def fetch_all(self, metric_name, start, end,
project_id=None, q_filter=None):
scope_key = CONF.collect.scope_key
filters = {'start': start, 'stop': stop, scope_key: project_id}
data = self.client.query(
filters=filters,
groupby=self.conf[metric_name]['groupby'])
# Format data etc
return outputAdditional configuration
If you need to extend the metric configuration (add parameters to the
extra_args section of metrics.yml), you can
overload the check_configuration method of the base
collector:
cloudkitty.collector.BaseCollector
This method uses voluptuous for data
validation. The base schema for each metric can be found in
cloudkitty.collector.METRIC_BASE_SCHEMA. This schema is
meant to be extended by other collectors. Example taken from the gnocchi
collector code:
from cloudkitty import collector
GNOCCHI_EXTRA_SCHEMA = {
Required('extra_args'): {
Required('resource_type'): All(str, Length(min=1)),
# Due to Gnocchi model, metric are grouped by resource.
# This parameter allows to adapt the key of the resource identifier
Required('resource_key', default='id'): All(str, Length(min=1)),
Required('aggregation_method', default='max'):
In(['max', 'mean', 'min']),
},
}
class GnocchiCollector(collector.BaseCollector):
collector_name = 'gnocchi'
@staticmethod
def check_configuration(conf):
conf = collector.BaseCollector.check_configuration(conf)
metric_schema = Schema(collector.METRIC_BASE_SCHEMA).extend(
GNOCCHI_EXTRA_SCHEMA)
output = {}
for metric_name, metric in conf.items():
met = output[metric_name] = metric_schema(metric)
if met['extra_args']['resource_key'] not in met['groupby']:
met['groupby'].append(met['extra_args']['resource_key'])
return outputIf your collector does not need any extra_args, it is
not required to overload the check_configuration
method.