Separate consumers/producers/partitioners
This commit is contained in:
@@ -1,698 +0,0 @@
|
||||
from __future__ import absolute_import
|
||||
|
||||
try:
|
||||
from itertools import zip_longest as izip_longest, repeat # pylint: disable-msg=E0611
|
||||
except ImportError: # python 2
|
||||
from itertools import izip_longest as izip_longest, repeat
|
||||
import logging
|
||||
import time
|
||||
import numbers
|
||||
from threading import Lock
|
||||
from multiprocessing import Process, Queue as MPQueue, Event, Value
|
||||
|
||||
import six
|
||||
|
||||
try:
|
||||
from Queue import Empty, Queue
|
||||
except ImportError: # python 2
|
||||
from queue import Empty, Queue
|
||||
|
||||
import kafka.common
|
||||
from kafka.common import (
|
||||
FetchRequest, OffsetRequest,
|
||||
OffsetCommitRequest, OffsetFetchRequest,
|
||||
ConsumerFetchSizeTooSmall, ConsumerNoMoreData,
|
||||
UnknownTopicOrPartitionError
|
||||
)
|
||||
|
||||
from kafka.util import ReentrantTimer
|
||||
|
||||
log = logging.getLogger("kafka")
|
||||
|
||||
AUTO_COMMIT_MSG_COUNT = 100
|
||||
AUTO_COMMIT_INTERVAL = 5000
|
||||
|
||||
FETCH_DEFAULT_BLOCK_TIMEOUT = 1
|
||||
FETCH_MAX_WAIT_TIME = 100
|
||||
FETCH_MIN_BYTES = 4096
|
||||
FETCH_BUFFER_SIZE_BYTES = 4096
|
||||
MAX_FETCH_BUFFER_SIZE_BYTES = FETCH_BUFFER_SIZE_BYTES * 8
|
||||
|
||||
ITER_TIMEOUT_SECONDS = 60
|
||||
NO_MESSAGES_WAIT_TIME_SECONDS = 0.1
|
||||
|
||||
|
||||
class FetchContext(object):
|
||||
"""
|
||||
Class for managing the state of a consumer during fetch
|
||||
"""
|
||||
def __init__(self, consumer, block, timeout):
|
||||
self.consumer = consumer
|
||||
self.block = block
|
||||
|
||||
if block:
|
||||
if not timeout:
|
||||
timeout = FETCH_DEFAULT_BLOCK_TIMEOUT
|
||||
self.timeout = timeout * 1000
|
||||
|
||||
def __enter__(self):
|
||||
"""Set fetch values based on blocking status"""
|
||||
self.orig_fetch_max_wait_time = self.consumer.fetch_max_wait_time
|
||||
self.orig_fetch_min_bytes = self.consumer.fetch_min_bytes
|
||||
if self.block:
|
||||
self.consumer.fetch_max_wait_time = self.timeout
|
||||
self.consumer.fetch_min_bytes = 1
|
||||
else:
|
||||
self.consumer.fetch_min_bytes = 0
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
"""Reset values"""
|
||||
self.consumer.fetch_max_wait_time = self.orig_fetch_max_wait_time
|
||||
self.consumer.fetch_min_bytes = self.orig_fetch_min_bytes
|
||||
|
||||
|
||||
class Consumer(object):
|
||||
"""
|
||||
Base class to be used by other consumers. Not to be used directly
|
||||
|
||||
This base class provides logic for
|
||||
* initialization and fetching metadata of partitions
|
||||
* Auto-commit logic
|
||||
* APIs for fetching pending message count
|
||||
"""
|
||||
def __init__(self, client, group, topic, partitions=None, auto_commit=True,
|
||||
auto_commit_every_n=AUTO_COMMIT_MSG_COUNT,
|
||||
auto_commit_every_t=AUTO_COMMIT_INTERVAL):
|
||||
|
||||
self.client = client
|
||||
self.topic = topic
|
||||
self.group = group
|
||||
self.client.load_metadata_for_topics(topic)
|
||||
self.offsets = {}
|
||||
|
||||
if not partitions:
|
||||
partitions = self.client.get_partition_ids_for_topic(topic)
|
||||
else:
|
||||
assert all(isinstance(x, numbers.Integral) for x in partitions)
|
||||
|
||||
# Variables for handling offset commits
|
||||
self.commit_lock = Lock()
|
||||
self.commit_timer = None
|
||||
self.count_since_commit = 0
|
||||
self.auto_commit = auto_commit
|
||||
self.auto_commit_every_n = auto_commit_every_n
|
||||
self.auto_commit_every_t = auto_commit_every_t
|
||||
|
||||
# Set up the auto-commit timer
|
||||
if auto_commit is True and auto_commit_every_t is not None:
|
||||
self.commit_timer = ReentrantTimer(auto_commit_every_t,
|
||||
self.commit)
|
||||
self.commit_timer.start()
|
||||
|
||||
if auto_commit:
|
||||
self.fetch_last_known_offsets(partitions)
|
||||
else:
|
||||
for partition in partitions:
|
||||
self.offsets[partition] = 0
|
||||
|
||||
def fetch_last_known_offsets(self, partitions=None):
|
||||
if not partitions:
|
||||
partitions = self.client.get_partition_ids_for_topic(self.topic)
|
||||
|
||||
def get_or_init_offset(resp):
|
||||
try:
|
||||
kafka.common.check_error(resp)
|
||||
return resp.offset
|
||||
except UnknownTopicOrPartitionError:
|
||||
return 0
|
||||
|
||||
for partition in partitions:
|
||||
req = OffsetFetchRequest(self.topic, partition)
|
||||
(resp,) = self.client.send_offset_fetch_request(self.group, [req],
|
||||
fail_on_error=False)
|
||||
self.offsets[partition] = get_or_init_offset(resp)
|
||||
self.fetch_offsets = self.offsets.copy()
|
||||
|
||||
def commit(self, partitions=None):
|
||||
"""
|
||||
Commit offsets for this consumer
|
||||
|
||||
partitions: list of partitions to commit, default is to commit
|
||||
all of them
|
||||
"""
|
||||
|
||||
# short circuit if nothing happened. This check is kept outside
|
||||
# to prevent un-necessarily acquiring a lock for checking the state
|
||||
if self.count_since_commit == 0:
|
||||
return
|
||||
|
||||
with self.commit_lock:
|
||||
# Do this check again, just in case the state has changed
|
||||
# during the lock acquiring timeout
|
||||
if self.count_since_commit == 0:
|
||||
return
|
||||
|
||||
reqs = []
|
||||
if not partitions: # commit all partitions
|
||||
partitions = self.offsets.keys()
|
||||
|
||||
for partition in partitions:
|
||||
offset = self.offsets[partition]
|
||||
log.debug("Commit offset %d in SimpleConsumer: "
|
||||
"group=%s, topic=%s, partition=%s" %
|
||||
(offset, self.group, self.topic, partition))
|
||||
|
||||
reqs.append(OffsetCommitRequest(self.topic, partition,
|
||||
offset, None))
|
||||
|
||||
resps = self.client.send_offset_commit_request(self.group, reqs)
|
||||
for resp in resps:
|
||||
kafka.common.check_error(resp)
|
||||
|
||||
self.count_since_commit = 0
|
||||
|
||||
def _auto_commit(self):
|
||||
"""
|
||||
Check if we have to commit based on number of messages and commit
|
||||
"""
|
||||
|
||||
# Check if we are supposed to do an auto-commit
|
||||
if not self.auto_commit or self.auto_commit_every_n is None:
|
||||
return
|
||||
|
||||
if self.count_since_commit >= self.auto_commit_every_n:
|
||||
self.commit()
|
||||
|
||||
def stop(self):
|
||||
if self.commit_timer is not None:
|
||||
self.commit_timer.stop()
|
||||
self.commit()
|
||||
|
||||
def pending(self, partitions=None):
|
||||
"""
|
||||
Gets the pending message count
|
||||
|
||||
partitions: list of partitions to check for, default is to check all
|
||||
"""
|
||||
if not partitions:
|
||||
partitions = self.offsets.keys()
|
||||
|
||||
total = 0
|
||||
reqs = []
|
||||
|
||||
for partition in partitions:
|
||||
reqs.append(OffsetRequest(self.topic, partition, -1, 1))
|
||||
|
||||
resps = self.client.send_offset_request(reqs)
|
||||
for resp in resps:
|
||||
partition = resp.partition
|
||||
pending = resp.offsets[0]
|
||||
offset = self.offsets[partition]
|
||||
total += pending - offset - (1 if offset > 0 else 0)
|
||||
|
||||
return total
|
||||
|
||||
|
||||
class SimpleConsumer(Consumer):
|
||||
"""
|
||||
A simple consumer implementation that consumes all/specified partitions
|
||||
for a topic
|
||||
|
||||
client: a connected KafkaClient
|
||||
group: a name for this consumer, used for offset storage and must be unique
|
||||
topic: the topic to consume
|
||||
partitions: An optional list of partitions to consume the data from
|
||||
|
||||
auto_commit: default True. Whether or not to auto commit the offsets
|
||||
auto_commit_every_n: default 100. How many messages to consume
|
||||
before a commit
|
||||
auto_commit_every_t: default 5000. How much time (in milliseconds) to
|
||||
wait before commit
|
||||
fetch_size_bytes: number of bytes to request in a FetchRequest
|
||||
buffer_size: default 4K. Initial number of bytes to tell kafka we
|
||||
have available. This will double as needed.
|
||||
max_buffer_size: default 16K. Max number of bytes to tell kafka we have
|
||||
available. None means no limit.
|
||||
iter_timeout: default None. How much time (in seconds) to wait for a
|
||||
message in the iterator before exiting. None means no
|
||||
timeout, so it will wait forever.
|
||||
|
||||
Auto commit details:
|
||||
If both auto_commit_every_n and auto_commit_every_t are set, they will
|
||||
reset one another when one is triggered. These triggers simply call the
|
||||
commit method on this class. A manual call to commit will also reset
|
||||
these triggers
|
||||
"""
|
||||
def __init__(self, client, group, topic, auto_commit=True, partitions=None,
|
||||
auto_commit_every_n=AUTO_COMMIT_MSG_COUNT,
|
||||
auto_commit_every_t=AUTO_COMMIT_INTERVAL,
|
||||
fetch_size_bytes=FETCH_MIN_BYTES,
|
||||
buffer_size=FETCH_BUFFER_SIZE_BYTES,
|
||||
max_buffer_size=MAX_FETCH_BUFFER_SIZE_BYTES,
|
||||
iter_timeout=None):
|
||||
super(SimpleConsumer, self).__init__(
|
||||
client, group, topic,
|
||||
partitions=partitions,
|
||||
auto_commit=auto_commit,
|
||||
auto_commit_every_n=auto_commit_every_n,
|
||||
auto_commit_every_t=auto_commit_every_t)
|
||||
|
||||
if max_buffer_size is not None and buffer_size > max_buffer_size:
|
||||
raise ValueError("buffer_size (%d) is greater than "
|
||||
"max_buffer_size (%d)" %
|
||||
(buffer_size, max_buffer_size))
|
||||
self.buffer_size = buffer_size
|
||||
self.max_buffer_size = max_buffer_size
|
||||
self.partition_info = False # Do not return partition info in msgs
|
||||
self.fetch_max_wait_time = FETCH_MAX_WAIT_TIME
|
||||
self.fetch_min_bytes = fetch_size_bytes
|
||||
self.fetch_offsets = self.offsets.copy()
|
||||
self.iter_timeout = iter_timeout
|
||||
self.queue = Queue()
|
||||
|
||||
def __repr__(self):
|
||||
return '<SimpleConsumer group=%s, topic=%s, partitions=%s>' % \
|
||||
(self.group, self.topic, str(self.offsets.keys()))
|
||||
|
||||
def provide_partition_info(self):
|
||||
"""
|
||||
Indicates that partition info must be returned by the consumer
|
||||
"""
|
||||
self.partition_info = True
|
||||
|
||||
def seek(self, offset, whence):
|
||||
"""
|
||||
Alter the current offset in the consumer, similar to fseek
|
||||
|
||||
offset: how much to modify the offset
|
||||
whence: where to modify it from
|
||||
0 is relative to the earliest available offset (head)
|
||||
1 is relative to the current offset
|
||||
2 is relative to the latest known offset (tail)
|
||||
"""
|
||||
|
||||
if whence == 1: # relative to current position
|
||||
for partition, _offset in self.offsets.items():
|
||||
self.offsets[partition] = _offset + offset
|
||||
elif whence in (0, 2): # relative to beginning or end
|
||||
# divide the request offset by number of partitions,
|
||||
# distribute the remained evenly
|
||||
(delta, rem) = divmod(offset, len(self.offsets))
|
||||
deltas = {}
|
||||
for partition, r in izip_longest(self.offsets.keys(),
|
||||
repeat(1, rem), fillvalue=0):
|
||||
deltas[partition] = delta + r
|
||||
|
||||
reqs = []
|
||||
for partition in self.offsets.keys():
|
||||
if whence == 0:
|
||||
reqs.append(OffsetRequest(self.topic, partition, -2, 1))
|
||||
elif whence == 2:
|
||||
reqs.append(OffsetRequest(self.topic, partition, -1, 1))
|
||||
else:
|
||||
pass
|
||||
|
||||
resps = self.client.send_offset_request(reqs)
|
||||
for resp in resps:
|
||||
self.offsets[resp.partition] = \
|
||||
resp.offsets[0] + deltas[resp.partition]
|
||||
else:
|
||||
raise ValueError("Unexpected value for `whence`, %d" % whence)
|
||||
|
||||
# Reset queue and fetch offsets since they are invalid
|
||||
self.fetch_offsets = self.offsets.copy()
|
||||
if self.auto_commit:
|
||||
self.count_since_commit += 1
|
||||
self.commit()
|
||||
|
||||
self.queue = Queue()
|
||||
|
||||
def get_messages(self, count=1, block=True, timeout=0.1):
|
||||
"""
|
||||
Fetch the specified number of messages
|
||||
|
||||
count: Indicates the maximum number of messages to be fetched
|
||||
block: If True, the API will block till some messages are fetched.
|
||||
timeout: If block is True, the function will block for the specified
|
||||
time (in seconds) until count messages is fetched. If None,
|
||||
it will block forever.
|
||||
"""
|
||||
messages = []
|
||||
if timeout is not None:
|
||||
max_time = time.time() + timeout
|
||||
|
||||
new_offsets = {}
|
||||
while count > 0 and (timeout is None or timeout > 0):
|
||||
result = self._get_message(block, timeout, get_partition_info=True,
|
||||
update_offset=False)
|
||||
if result:
|
||||
partition, message = result
|
||||
if self.partition_info:
|
||||
messages.append(result)
|
||||
else:
|
||||
messages.append(message)
|
||||
new_offsets[partition] = message.offset + 1
|
||||
count -= 1
|
||||
else:
|
||||
# Ran out of messages for the last request.
|
||||
if not block:
|
||||
# If we're not blocking, break.
|
||||
break
|
||||
if timeout is not None:
|
||||
# If we're blocking and have a timeout, reduce it to the
|
||||
# appropriate value
|
||||
timeout = max_time - time.time()
|
||||
|
||||
# Update and commit offsets if necessary
|
||||
self.offsets.update(new_offsets)
|
||||
self.count_since_commit += len(messages)
|
||||
self._auto_commit()
|
||||
return messages
|
||||
|
||||
def get_message(self, block=True, timeout=0.1, get_partition_info=None):
|
||||
return self._get_message(block, timeout, get_partition_info)
|
||||
|
||||
def _get_message(self, block=True, timeout=0.1, get_partition_info=None,
|
||||
update_offset=True):
|
||||
"""
|
||||
If no messages can be fetched, returns None.
|
||||
If get_partition_info is None, it defaults to self.partition_info
|
||||
If get_partition_info is True, returns (partition, message)
|
||||
If get_partition_info is False, returns message
|
||||
"""
|
||||
if self.queue.empty():
|
||||
# We're out of messages, go grab some more.
|
||||
with FetchContext(self, block, timeout):
|
||||
self._fetch()
|
||||
try:
|
||||
partition, message = self.queue.get_nowait()
|
||||
|
||||
if update_offset:
|
||||
# Update partition offset
|
||||
self.offsets[partition] = message.offset + 1
|
||||
|
||||
# Count, check and commit messages if necessary
|
||||
self.count_since_commit += 1
|
||||
self._auto_commit()
|
||||
|
||||
if get_partition_info is None:
|
||||
get_partition_info = self.partition_info
|
||||
if get_partition_info:
|
||||
return partition, message
|
||||
else:
|
||||
return message
|
||||
except Empty:
|
||||
return None
|
||||
|
||||
def __iter__(self):
|
||||
if self.iter_timeout is None:
|
||||
timeout = ITER_TIMEOUT_SECONDS
|
||||
else:
|
||||
timeout = self.iter_timeout
|
||||
|
||||
while True:
|
||||
message = self.get_message(True, timeout)
|
||||
if message:
|
||||
yield message
|
||||
elif self.iter_timeout is None:
|
||||
# We did not receive any message yet but we don't have a
|
||||
# timeout, so give up the CPU for a while before trying again
|
||||
time.sleep(NO_MESSAGES_WAIT_TIME_SECONDS)
|
||||
else:
|
||||
# Timed out waiting for a message
|
||||
break
|
||||
|
||||
def _fetch(self):
|
||||
# Create fetch request payloads for all the partitions
|
||||
partitions = dict((p, self.buffer_size)
|
||||
for p in self.fetch_offsets.keys())
|
||||
while partitions:
|
||||
requests = []
|
||||
for partition, buffer_size in six.iteritems(partitions):
|
||||
requests.append(FetchRequest(self.topic, partition,
|
||||
self.fetch_offsets[partition],
|
||||
buffer_size))
|
||||
# Send request
|
||||
responses = self.client.send_fetch_request(
|
||||
requests,
|
||||
max_wait_time=int(self.fetch_max_wait_time),
|
||||
min_bytes=self.fetch_min_bytes)
|
||||
|
||||
retry_partitions = {}
|
||||
for resp in responses:
|
||||
partition = resp.partition
|
||||
buffer_size = partitions[partition]
|
||||
try:
|
||||
for message in resp.messages:
|
||||
# Put the message in our queue
|
||||
self.queue.put((partition, message))
|
||||
self.fetch_offsets[partition] = message.offset + 1
|
||||
except ConsumerFetchSizeTooSmall:
|
||||
if (self.max_buffer_size is not None and
|
||||
buffer_size == self.max_buffer_size):
|
||||
log.error("Max fetch size %d too small",
|
||||
self.max_buffer_size)
|
||||
raise
|
||||
if self.max_buffer_size is None:
|
||||
buffer_size *= 2
|
||||
else:
|
||||
buffer_size = max(buffer_size * 2,
|
||||
self.max_buffer_size)
|
||||
log.warn("Fetch size too small, increase to %d (2x) "
|
||||
"and retry", buffer_size)
|
||||
retry_partitions[partition] = buffer_size
|
||||
except ConsumerNoMoreData as e:
|
||||
log.debug("Iteration was ended by %r", e)
|
||||
except StopIteration:
|
||||
# Stop iterating through this partition
|
||||
log.debug("Done iterating over partition %s" % partition)
|
||||
partitions = retry_partitions
|
||||
|
||||
def _mp_consume(client, group, topic, chunk, queue, start, exit, pause, size):
|
||||
"""
|
||||
A child process worker which consumes messages based on the
|
||||
notifications given by the controller process
|
||||
|
||||
NOTE: Ideally, this should have been a method inside the Consumer
|
||||
class. However, multiprocessing module has issues in windows. The
|
||||
functionality breaks unless this function is kept outside of a class
|
||||
"""
|
||||
|
||||
# Make the child processes open separate socket connections
|
||||
client.reinit()
|
||||
|
||||
# We will start consumers without auto-commit. Auto-commit will be
|
||||
# done by the master controller process.
|
||||
consumer = SimpleConsumer(client, group, topic,
|
||||
partitions=chunk,
|
||||
auto_commit=False,
|
||||
auto_commit_every_n=None,
|
||||
auto_commit_every_t=None)
|
||||
|
||||
# Ensure that the consumer provides the partition information
|
||||
consumer.provide_partition_info()
|
||||
|
||||
while True:
|
||||
# Wait till the controller indicates us to start consumption
|
||||
start.wait()
|
||||
|
||||
# If we are asked to quit, do so
|
||||
if exit.is_set():
|
||||
break
|
||||
|
||||
# Consume messages and add them to the queue. If the controller
|
||||
# indicates a specific number of messages, follow that advice
|
||||
count = 0
|
||||
|
||||
message = consumer.get_message()
|
||||
if message:
|
||||
queue.put(message)
|
||||
count += 1
|
||||
|
||||
# We have reached the required size. The controller might have
|
||||
# more than what he needs. Wait for a while.
|
||||
# Without this logic, it is possible that we run into a big
|
||||
# loop consuming all available messages before the controller
|
||||
# can reset the 'start' event
|
||||
if count == size.value:
|
||||
pause.wait()
|
||||
|
||||
else:
|
||||
# In case we did not receive any message, give up the CPU for
|
||||
# a while before we try again
|
||||
time.sleep(NO_MESSAGES_WAIT_TIME_SECONDS)
|
||||
|
||||
consumer.stop()
|
||||
|
||||
|
||||
class MultiProcessConsumer(Consumer):
|
||||
"""
|
||||
A consumer implementation that consumes partitions for a topic in
|
||||
parallel using multiple processes
|
||||
|
||||
client: a connected KafkaClient
|
||||
group: a name for this consumer, used for offset storage and must be unique
|
||||
topic: the topic to consume
|
||||
|
||||
auto_commit: default True. Whether or not to auto commit the offsets
|
||||
auto_commit_every_n: default 100. How many messages to consume
|
||||
before a commit
|
||||
auto_commit_every_t: default 5000. How much time (in milliseconds) to
|
||||
wait before commit
|
||||
num_procs: Number of processes to start for consuming messages.
|
||||
The available partitions will be divided among these processes
|
||||
partitions_per_proc: Number of partitions to be allocated per process
|
||||
(overrides num_procs)
|
||||
|
||||
Auto commit details:
|
||||
If both auto_commit_every_n and auto_commit_every_t are set, they will
|
||||
reset one another when one is triggered. These triggers simply call the
|
||||
commit method on this class. A manual call to commit will also reset
|
||||
these triggers
|
||||
"""
|
||||
def __init__(self, client, group, topic, auto_commit=True,
|
||||
auto_commit_every_n=AUTO_COMMIT_MSG_COUNT,
|
||||
auto_commit_every_t=AUTO_COMMIT_INTERVAL,
|
||||
num_procs=1, partitions_per_proc=0):
|
||||
|
||||
# Initiate the base consumer class
|
||||
super(MultiProcessConsumer, self).__init__(
|
||||
client, group, topic,
|
||||
partitions=None,
|
||||
auto_commit=auto_commit,
|
||||
auto_commit_every_n=auto_commit_every_n,
|
||||
auto_commit_every_t=auto_commit_every_t)
|
||||
|
||||
# Variables for managing and controlling the data flow from
|
||||
# consumer child process to master
|
||||
self.queue = MPQueue(1024) # Child consumers dump messages into this
|
||||
self.start = Event() # Indicates the consumers to start fetch
|
||||
self.exit = Event() # Requests the consumers to shutdown
|
||||
self.pause = Event() # Requests the consumers to pause fetch
|
||||
self.size = Value('i', 0) # Indicator of number of messages to fetch
|
||||
|
||||
partitions = self.offsets.keys()
|
||||
|
||||
# If unspecified, start one consumer per partition
|
||||
# The logic below ensures that
|
||||
# * we do not cross the num_procs limit
|
||||
# * we have an even distribution of partitions among processes
|
||||
if not partitions_per_proc:
|
||||
partitions_per_proc = round(len(partitions) * 1.0 / num_procs)
|
||||
if partitions_per_proc < num_procs * 0.5:
|
||||
partitions_per_proc += 1
|
||||
|
||||
# The final set of chunks
|
||||
chunker = lambda *x: [] + list(x)
|
||||
chunks = map(chunker, *[iter(partitions)] * int(partitions_per_proc))
|
||||
|
||||
self.procs = []
|
||||
for chunk in chunks:
|
||||
chunk = filter(lambda x: x is not None, chunk)
|
||||
args = (client.copy(),
|
||||
group, topic, list(chunk),
|
||||
self.queue, self.start, self.exit,
|
||||
self.pause, self.size)
|
||||
|
||||
proc = Process(target=_mp_consume, args=args)
|
||||
proc.daemon = True
|
||||
proc.start()
|
||||
self.procs.append(proc)
|
||||
|
||||
def __repr__(self):
|
||||
return '<MultiProcessConsumer group=%s, topic=%s, consumers=%d>' % \
|
||||
(self.group, self.topic, len(self.procs))
|
||||
|
||||
def stop(self):
|
||||
# Set exit and start off all waiting consumers
|
||||
self.exit.set()
|
||||
self.pause.set()
|
||||
self.start.set()
|
||||
|
||||
for proc in self.procs:
|
||||
proc.join()
|
||||
proc.terminate()
|
||||
|
||||
super(MultiProcessConsumer, self).stop()
|
||||
|
||||
def __iter__(self):
|
||||
"""
|
||||
Iterator to consume the messages available on this consumer
|
||||
"""
|
||||
# Trigger the consumer procs to start off.
|
||||
# We will iterate till there are no more messages available
|
||||
self.size.value = 0
|
||||
self.pause.set()
|
||||
|
||||
while True:
|
||||
self.start.set()
|
||||
try:
|
||||
# We will block for a small while so that the consumers get
|
||||
# a chance to run and put some messages in the queue
|
||||
# TODO: This is a hack and will make the consumer block for
|
||||
# at least one second. Need to find a better way of doing this
|
||||
partition, message = self.queue.get(block=True, timeout=1)
|
||||
except Empty:
|
||||
break
|
||||
|
||||
# Count, check and commit messages if necessary
|
||||
self.offsets[partition] = message.offset + 1
|
||||
self.start.clear()
|
||||
self.count_since_commit += 1
|
||||
self._auto_commit()
|
||||
yield message
|
||||
|
||||
self.start.clear()
|
||||
|
||||
def get_messages(self, count=1, block=True, timeout=10):
|
||||
"""
|
||||
Fetch the specified number of messages
|
||||
|
||||
count: Indicates the maximum number of messages to be fetched
|
||||
block: If True, the API will block till some messages are fetched.
|
||||
timeout: If block is True, the function will block for the specified
|
||||
time (in seconds) until count messages is fetched. If None,
|
||||
it will block forever.
|
||||
"""
|
||||
messages = []
|
||||
|
||||
# Give a size hint to the consumers. Each consumer process will fetch
|
||||
# a maximum of "count" messages. This will fetch more messages than
|
||||
# necessary, but these will not be committed to kafka. Also, the extra
|
||||
# messages can be provided in subsequent runs
|
||||
self.size.value = count
|
||||
self.pause.clear()
|
||||
|
||||
if timeout is not None:
|
||||
max_time = time.time() + timeout
|
||||
|
||||
new_offsets = {}
|
||||
while count > 0 and (timeout is None or timeout > 0):
|
||||
# Trigger consumption only if the queue is empty
|
||||
# By doing this, we will ensure that consumers do not
|
||||
# go into overdrive and keep consuming thousands of
|
||||
# messages when the user might need only a few
|
||||
if self.queue.empty():
|
||||
self.start.set()
|
||||
|
||||
try:
|
||||
partition, message = self.queue.get(block, timeout)
|
||||
except Empty:
|
||||
break
|
||||
|
||||
messages.append(message)
|
||||
new_offsets[partition] = message.offset + 1
|
||||
count -= 1
|
||||
if timeout is not None:
|
||||
timeout = max_time - time.time()
|
||||
|
||||
self.size.value = 0
|
||||
self.start.clear()
|
||||
self.pause.set()
|
||||
|
||||
# Update and commit offsets if necessary
|
||||
self.offsets.update(new_offsets)
|
||||
self.count_since_commit += len(messages)
|
||||
self._auto_commit()
|
||||
|
||||
return messages
|
||||
6
kafka/consumer/__init__.py
Normal file
6
kafka/consumer/__init__.py
Normal file
@@ -0,0 +1,6 @@
|
||||
from .simple import SimpleConsumer
|
||||
from .multiprocess import MultiProcessConsumer
|
||||
|
||||
__all__ = [
|
||||
'SimpleConsumer', 'MultiProcessConsumer'
|
||||
]
|
||||
169
kafka/consumer/base.py
Normal file
169
kafka/consumer/base.py
Normal file
@@ -0,0 +1,169 @@
|
||||
from __future__ import absolute_import
|
||||
|
||||
import logging
|
||||
import numbers
|
||||
from threading import Lock
|
||||
|
||||
import kafka.common
|
||||
from kafka.common import (
|
||||
OffsetRequest, OffsetCommitRequest, OffsetFetchRequest,
|
||||
UnknownTopicOrPartitionError
|
||||
)
|
||||
|
||||
from kafka.util import ReentrantTimer
|
||||
|
||||
log = logging.getLogger("kafka")
|
||||
|
||||
AUTO_COMMIT_MSG_COUNT = 100
|
||||
AUTO_COMMIT_INTERVAL = 5000
|
||||
|
||||
FETCH_DEFAULT_BLOCK_TIMEOUT = 1
|
||||
FETCH_MAX_WAIT_TIME = 100
|
||||
FETCH_MIN_BYTES = 4096
|
||||
FETCH_BUFFER_SIZE_BYTES = 4096
|
||||
MAX_FETCH_BUFFER_SIZE_BYTES = FETCH_BUFFER_SIZE_BYTES * 8
|
||||
|
||||
ITER_TIMEOUT_SECONDS = 60
|
||||
NO_MESSAGES_WAIT_TIME_SECONDS = 0.1
|
||||
|
||||
|
||||
class Consumer(object):
|
||||
"""
|
||||
Base class to be used by other consumers. Not to be used directly
|
||||
|
||||
This base class provides logic for
|
||||
* initialization and fetching metadata of partitions
|
||||
* Auto-commit logic
|
||||
* APIs for fetching pending message count
|
||||
"""
|
||||
def __init__(self, client, group, topic, partitions=None, auto_commit=True,
|
||||
auto_commit_every_n=AUTO_COMMIT_MSG_COUNT,
|
||||
auto_commit_every_t=AUTO_COMMIT_INTERVAL):
|
||||
|
||||
self.client = client
|
||||
self.topic = topic
|
||||
self.group = group
|
||||
self.client.load_metadata_for_topics(topic)
|
||||
self.offsets = {}
|
||||
|
||||
if not partitions:
|
||||
partitions = self.client.get_partition_ids_for_topic(topic)
|
||||
else:
|
||||
assert all(isinstance(x, numbers.Integral) for x in partitions)
|
||||
|
||||
# Variables for handling offset commits
|
||||
self.commit_lock = Lock()
|
||||
self.commit_timer = None
|
||||
self.count_since_commit = 0
|
||||
self.auto_commit = auto_commit
|
||||
self.auto_commit_every_n = auto_commit_every_n
|
||||
self.auto_commit_every_t = auto_commit_every_t
|
||||
|
||||
# Set up the auto-commit timer
|
||||
if auto_commit is True and auto_commit_every_t is not None:
|
||||
self.commit_timer = ReentrantTimer(auto_commit_every_t,
|
||||
self.commit)
|
||||
self.commit_timer.start()
|
||||
|
||||
if auto_commit:
|
||||
self.fetch_last_known_offsets(partitions)
|
||||
else:
|
||||
for partition in partitions:
|
||||
self.offsets[partition] = 0
|
||||
|
||||
def fetch_last_known_offsets(self, partitions=None):
|
||||
if not partitions:
|
||||
partitions = self.client.get_partition_ids_for_topic(self.topic)
|
||||
|
||||
def get_or_init_offset(resp):
|
||||
try:
|
||||
kafka.common.check_error(resp)
|
||||
return resp.offset
|
||||
except UnknownTopicOrPartitionError:
|
||||
return 0
|
||||
|
||||
for partition in partitions:
|
||||
req = OffsetFetchRequest(self.topic, partition)
|
||||
(resp,) = self.client.send_offset_fetch_request(self.group, [req],
|
||||
fail_on_error=False)
|
||||
self.offsets[partition] = get_or_init_offset(resp)
|
||||
self.fetch_offsets = self.offsets.copy()
|
||||
|
||||
def commit(self, partitions=None):
|
||||
"""
|
||||
Commit offsets for this consumer
|
||||
|
||||
partitions: list of partitions to commit, default is to commit
|
||||
all of them
|
||||
"""
|
||||
|
||||
# short circuit if nothing happened. This check is kept outside
|
||||
# to prevent un-necessarily acquiring a lock for checking the state
|
||||
if self.count_since_commit == 0:
|
||||
return
|
||||
|
||||
with self.commit_lock:
|
||||
# Do this check again, just in case the state has changed
|
||||
# during the lock acquiring timeout
|
||||
if self.count_since_commit == 0:
|
||||
return
|
||||
|
||||
reqs = []
|
||||
if not partitions: # commit all partitions
|
||||
partitions = self.offsets.keys()
|
||||
|
||||
for partition in partitions:
|
||||
offset = self.offsets[partition]
|
||||
log.debug("Commit offset %d in SimpleConsumer: "
|
||||
"group=%s, topic=%s, partition=%s" %
|
||||
(offset, self.group, self.topic, partition))
|
||||
|
||||
reqs.append(OffsetCommitRequest(self.topic, partition,
|
||||
offset, None))
|
||||
|
||||
resps = self.client.send_offset_commit_request(self.group, reqs)
|
||||
for resp in resps:
|
||||
kafka.common.check_error(resp)
|
||||
|
||||
self.count_since_commit = 0
|
||||
|
||||
def _auto_commit(self):
|
||||
"""
|
||||
Check if we have to commit based on number of messages and commit
|
||||
"""
|
||||
|
||||
# Check if we are supposed to do an auto-commit
|
||||
if not self.auto_commit or self.auto_commit_every_n is None:
|
||||
return
|
||||
|
||||
if self.count_since_commit >= self.auto_commit_every_n:
|
||||
self.commit()
|
||||
|
||||
def stop(self):
|
||||
if self.commit_timer is not None:
|
||||
self.commit_timer.stop()
|
||||
self.commit()
|
||||
|
||||
def pending(self, partitions=None):
|
||||
"""
|
||||
Gets the pending message count
|
||||
|
||||
partitions: list of partitions to check for, default is to check all
|
||||
"""
|
||||
if not partitions:
|
||||
partitions = self.offsets.keys()
|
||||
|
||||
total = 0
|
||||
reqs = []
|
||||
|
||||
for partition in partitions:
|
||||
reqs.append(OffsetRequest(self.topic, partition, -1, 1))
|
||||
|
||||
resps = self.client.send_offset_request(reqs)
|
||||
for resp in resps:
|
||||
partition = resp.partition
|
||||
pending = resp.offsets[0]
|
||||
offset = self.offsets[partition]
|
||||
total += pending - offset - (1 if offset > 0 else 0)
|
||||
|
||||
return total
|
||||
248
kafka/consumer/multiprocess.py
Normal file
248
kafka/consumer/multiprocess.py
Normal file
@@ -0,0 +1,248 @@
|
||||
from __future__ import absolute_import
|
||||
|
||||
import logging
|
||||
import time
|
||||
from multiprocessing import Process, Queue as MPQueue, Event, Value
|
||||
|
||||
try:
|
||||
from Queue import Empty
|
||||
except ImportError: # python 2
|
||||
from queue import Empty
|
||||
|
||||
from .base import (
|
||||
AUTO_COMMIT_MSG_COUNT, AUTO_COMMIT_INTERVAL,
|
||||
NO_MESSAGES_WAIT_TIME_SECONDS
|
||||
)
|
||||
from .simple import Consumer, SimpleConsumer
|
||||
|
||||
log = logging.getLogger("kafka")
|
||||
|
||||
|
||||
def _mp_consume(client, group, topic, chunk, queue, start, exit, pause, size):
|
||||
"""
|
||||
A child process worker which consumes messages based on the
|
||||
notifications given by the controller process
|
||||
|
||||
NOTE: Ideally, this should have been a method inside the Consumer
|
||||
class. However, multiprocessing module has issues in windows. The
|
||||
functionality breaks unless this function is kept outside of a class
|
||||
"""
|
||||
|
||||
# Make the child processes open separate socket connections
|
||||
client.reinit()
|
||||
|
||||
# We will start consumers without auto-commit. Auto-commit will be
|
||||
# done by the master controller process.
|
||||
consumer = SimpleConsumer(client, group, topic,
|
||||
partitions=chunk,
|
||||
auto_commit=False,
|
||||
auto_commit_every_n=None,
|
||||
auto_commit_every_t=None)
|
||||
|
||||
# Ensure that the consumer provides the partition information
|
||||
consumer.provide_partition_info()
|
||||
|
||||
while True:
|
||||
# Wait till the controller indicates us to start consumption
|
||||
start.wait()
|
||||
|
||||
# If we are asked to quit, do so
|
||||
if exit.is_set():
|
||||
break
|
||||
|
||||
# Consume messages and add them to the queue. If the controller
|
||||
# indicates a specific number of messages, follow that advice
|
||||
count = 0
|
||||
|
||||
message = consumer.get_message()
|
||||
if message:
|
||||
queue.put(message)
|
||||
count += 1
|
||||
|
||||
# We have reached the required size. The controller might have
|
||||
# more than what he needs. Wait for a while.
|
||||
# Without this logic, it is possible that we run into a big
|
||||
# loop consuming all available messages before the controller
|
||||
# can reset the 'start' event
|
||||
if count == size.value:
|
||||
pause.wait()
|
||||
|
||||
else:
|
||||
# In case we did not receive any message, give up the CPU for
|
||||
# a while before we try again
|
||||
time.sleep(NO_MESSAGES_WAIT_TIME_SECONDS)
|
||||
|
||||
consumer.stop()
|
||||
|
||||
|
||||
class MultiProcessConsumer(Consumer):
|
||||
"""
|
||||
A consumer implementation that consumes partitions for a topic in
|
||||
parallel using multiple processes
|
||||
|
||||
client: a connected KafkaClient
|
||||
group: a name for this consumer, used for offset storage and must be unique
|
||||
topic: the topic to consume
|
||||
|
||||
auto_commit: default True. Whether or not to auto commit the offsets
|
||||
auto_commit_every_n: default 100. How many messages to consume
|
||||
before a commit
|
||||
auto_commit_every_t: default 5000. How much time (in milliseconds) to
|
||||
wait before commit
|
||||
num_procs: Number of processes to start for consuming messages.
|
||||
The available partitions will be divided among these processes
|
||||
partitions_per_proc: Number of partitions to be allocated per process
|
||||
(overrides num_procs)
|
||||
|
||||
Auto commit details:
|
||||
If both auto_commit_every_n and auto_commit_every_t are set, they will
|
||||
reset one another when one is triggered. These triggers simply call the
|
||||
commit method on this class. A manual call to commit will also reset
|
||||
these triggers
|
||||
"""
|
||||
def __init__(self, client, group, topic, auto_commit=True,
|
||||
auto_commit_every_n=AUTO_COMMIT_MSG_COUNT,
|
||||
auto_commit_every_t=AUTO_COMMIT_INTERVAL,
|
||||
num_procs=1, partitions_per_proc=0):
|
||||
|
||||
# Initiate the base consumer class
|
||||
super(MultiProcessConsumer, self).__init__(
|
||||
client, group, topic,
|
||||
partitions=None,
|
||||
auto_commit=auto_commit,
|
||||
auto_commit_every_n=auto_commit_every_n,
|
||||
auto_commit_every_t=auto_commit_every_t)
|
||||
|
||||
# Variables for managing and controlling the data flow from
|
||||
# consumer child process to master
|
||||
self.queue = MPQueue(1024) # Child consumers dump messages into this
|
||||
self.start = Event() # Indicates the consumers to start fetch
|
||||
self.exit = Event() # Requests the consumers to shutdown
|
||||
self.pause = Event() # Requests the consumers to pause fetch
|
||||
self.size = Value('i', 0) # Indicator of number of messages to fetch
|
||||
|
||||
partitions = self.offsets.keys()
|
||||
|
||||
# If unspecified, start one consumer per partition
|
||||
# The logic below ensures that
|
||||
# * we do not cross the num_procs limit
|
||||
# * we have an even distribution of partitions among processes
|
||||
if not partitions_per_proc:
|
||||
partitions_per_proc = round(len(partitions) * 1.0 / num_procs)
|
||||
if partitions_per_proc < num_procs * 0.5:
|
||||
partitions_per_proc += 1
|
||||
|
||||
# The final set of chunks
|
||||
chunker = lambda *x: [] + list(x)
|
||||
chunks = map(chunker, *[iter(partitions)] * int(partitions_per_proc))
|
||||
|
||||
self.procs = []
|
||||
for chunk in chunks:
|
||||
chunk = filter(lambda x: x is not None, chunk)
|
||||
args = (client.copy(),
|
||||
group, topic, list(chunk),
|
||||
self.queue, self.start, self.exit,
|
||||
self.pause, self.size)
|
||||
|
||||
proc = Process(target=_mp_consume, args=args)
|
||||
proc.daemon = True
|
||||
proc.start()
|
||||
self.procs.append(proc)
|
||||
|
||||
def __repr__(self):
|
||||
return '<MultiProcessConsumer group=%s, topic=%s, consumers=%d>' % \
|
||||
(self.group, self.topic, len(self.procs))
|
||||
|
||||
def stop(self):
|
||||
# Set exit and start off all waiting consumers
|
||||
self.exit.set()
|
||||
self.pause.set()
|
||||
self.start.set()
|
||||
|
||||
for proc in self.procs:
|
||||
proc.join()
|
||||
proc.terminate()
|
||||
|
||||
super(MultiProcessConsumer, self).stop()
|
||||
|
||||
def __iter__(self):
|
||||
"""
|
||||
Iterator to consume the messages available on this consumer
|
||||
"""
|
||||
# Trigger the consumer procs to start off.
|
||||
# We will iterate till there are no more messages available
|
||||
self.size.value = 0
|
||||
self.pause.set()
|
||||
|
||||
while True:
|
||||
self.start.set()
|
||||
try:
|
||||
# We will block for a small while so that the consumers get
|
||||
# a chance to run and put some messages in the queue
|
||||
# TODO: This is a hack and will make the consumer block for
|
||||
# at least one second. Need to find a better way of doing this
|
||||
partition, message = self.queue.get(block=True, timeout=1)
|
||||
except Empty:
|
||||
break
|
||||
|
||||
# Count, check and commit messages if necessary
|
||||
self.offsets[partition] = message.offset + 1
|
||||
self.start.clear()
|
||||
self.count_since_commit += 1
|
||||
self._auto_commit()
|
||||
yield message
|
||||
|
||||
self.start.clear()
|
||||
|
||||
def get_messages(self, count=1, block=True, timeout=10):
|
||||
"""
|
||||
Fetch the specified number of messages
|
||||
|
||||
count: Indicates the maximum number of messages to be fetched
|
||||
block: If True, the API will block till some messages are fetched.
|
||||
timeout: If block is True, the function will block for the specified
|
||||
time (in seconds) until count messages is fetched. If None,
|
||||
it will block forever.
|
||||
"""
|
||||
messages = []
|
||||
|
||||
# Give a size hint to the consumers. Each consumer process will fetch
|
||||
# a maximum of "count" messages. This will fetch more messages than
|
||||
# necessary, but these will not be committed to kafka. Also, the extra
|
||||
# messages can be provided in subsequent runs
|
||||
self.size.value = count
|
||||
self.pause.clear()
|
||||
|
||||
if timeout is not None:
|
||||
max_time = time.time() + timeout
|
||||
|
||||
new_offsets = {}
|
||||
while count > 0 and (timeout is None or timeout > 0):
|
||||
# Trigger consumption only if the queue is empty
|
||||
# By doing this, we will ensure that consumers do not
|
||||
# go into overdrive and keep consuming thousands of
|
||||
# messages when the user might need only a few
|
||||
if self.queue.empty():
|
||||
self.start.set()
|
||||
|
||||
try:
|
||||
partition, message = self.queue.get(block, timeout)
|
||||
except Empty:
|
||||
break
|
||||
|
||||
messages.append(message)
|
||||
new_offsets[partition] = message.offset + 1
|
||||
count -= 1
|
||||
if timeout is not None:
|
||||
timeout = max_time - time.time()
|
||||
|
||||
self.size.value = 0
|
||||
self.start.clear()
|
||||
self.pause.set()
|
||||
|
||||
# Update and commit offsets if necessary
|
||||
self.offsets.update(new_offsets)
|
||||
self.count_since_commit += len(messages)
|
||||
self._auto_commit()
|
||||
|
||||
return messages
|
||||
318
kafka/consumer/simple.py
Normal file
318
kafka/consumer/simple.py
Normal file
@@ -0,0 +1,318 @@
|
||||
from __future__ import absolute_import
|
||||
|
||||
try:
|
||||
from itertools import zip_longest as izip_longest, repeat # pylint: disable-msg=E0611
|
||||
except ImportError: # python 2
|
||||
from itertools import izip_longest as izip_longest, repeat
|
||||
import logging
|
||||
import time
|
||||
|
||||
import six
|
||||
|
||||
try:
|
||||
from Queue import Empty, Queue
|
||||
except ImportError: # python 2
|
||||
from queue import Empty, Queue
|
||||
|
||||
from kafka.common import (
|
||||
FetchRequest, OffsetRequest,
|
||||
ConsumerFetchSizeTooSmall, ConsumerNoMoreData
|
||||
)
|
||||
from .base import (
|
||||
Consumer,
|
||||
FETCH_DEFAULT_BLOCK_TIMEOUT,
|
||||
AUTO_COMMIT_MSG_COUNT,
|
||||
AUTO_COMMIT_INTERVAL,
|
||||
FETCH_MIN_BYTES,
|
||||
FETCH_BUFFER_SIZE_BYTES,
|
||||
MAX_FETCH_BUFFER_SIZE_BYTES,
|
||||
FETCH_MAX_WAIT_TIME,
|
||||
ITER_TIMEOUT_SECONDS,
|
||||
NO_MESSAGES_WAIT_TIME_SECONDS
|
||||
)
|
||||
|
||||
log = logging.getLogger("kafka")
|
||||
|
||||
class FetchContext(object):
|
||||
"""
|
||||
Class for managing the state of a consumer during fetch
|
||||
"""
|
||||
def __init__(self, consumer, block, timeout):
|
||||
self.consumer = consumer
|
||||
self.block = block
|
||||
|
||||
if block:
|
||||
if not timeout:
|
||||
timeout = FETCH_DEFAULT_BLOCK_TIMEOUT
|
||||
self.timeout = timeout * 1000
|
||||
|
||||
def __enter__(self):
|
||||
"""Set fetch values based on blocking status"""
|
||||
self.orig_fetch_max_wait_time = self.consumer.fetch_max_wait_time
|
||||
self.orig_fetch_min_bytes = self.consumer.fetch_min_bytes
|
||||
if self.block:
|
||||
self.consumer.fetch_max_wait_time = self.timeout
|
||||
self.consumer.fetch_min_bytes = 1
|
||||
else:
|
||||
self.consumer.fetch_min_bytes = 0
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
"""Reset values"""
|
||||
self.consumer.fetch_max_wait_time = self.orig_fetch_max_wait_time
|
||||
self.consumer.fetch_min_bytes = self.orig_fetch_min_bytes
|
||||
|
||||
|
||||
class SimpleConsumer(Consumer):
|
||||
"""
|
||||
A simple consumer implementation that consumes all/specified partitions
|
||||
for a topic
|
||||
|
||||
client: a connected KafkaClient
|
||||
group: a name for this consumer, used for offset storage and must be unique
|
||||
topic: the topic to consume
|
||||
partitions: An optional list of partitions to consume the data from
|
||||
|
||||
auto_commit: default True. Whether or not to auto commit the offsets
|
||||
auto_commit_every_n: default 100. How many messages to consume
|
||||
before a commit
|
||||
auto_commit_every_t: default 5000. How much time (in milliseconds) to
|
||||
wait before commit
|
||||
fetch_size_bytes: number of bytes to request in a FetchRequest
|
||||
buffer_size: default 4K. Initial number of bytes to tell kafka we
|
||||
have available. This will double as needed.
|
||||
max_buffer_size: default 16K. Max number of bytes to tell kafka we have
|
||||
available. None means no limit.
|
||||
iter_timeout: default None. How much time (in seconds) to wait for a
|
||||
message in the iterator before exiting. None means no
|
||||
timeout, so it will wait forever.
|
||||
|
||||
Auto commit details:
|
||||
If both auto_commit_every_n and auto_commit_every_t are set, they will
|
||||
reset one another when one is triggered. These triggers simply call the
|
||||
commit method on this class. A manual call to commit will also reset
|
||||
these triggers
|
||||
"""
|
||||
def __init__(self, client, group, topic, auto_commit=True, partitions=None,
|
||||
auto_commit_every_n=AUTO_COMMIT_MSG_COUNT,
|
||||
auto_commit_every_t=AUTO_COMMIT_INTERVAL,
|
||||
fetch_size_bytes=FETCH_MIN_BYTES,
|
||||
buffer_size=FETCH_BUFFER_SIZE_BYTES,
|
||||
max_buffer_size=MAX_FETCH_BUFFER_SIZE_BYTES,
|
||||
iter_timeout=None):
|
||||
super(SimpleConsumer, self).__init__(
|
||||
client, group, topic,
|
||||
partitions=partitions,
|
||||
auto_commit=auto_commit,
|
||||
auto_commit_every_n=auto_commit_every_n,
|
||||
auto_commit_every_t=auto_commit_every_t)
|
||||
|
||||
if max_buffer_size is not None and buffer_size > max_buffer_size:
|
||||
raise ValueError("buffer_size (%d) is greater than "
|
||||
"max_buffer_size (%d)" %
|
||||
(buffer_size, max_buffer_size))
|
||||
self.buffer_size = buffer_size
|
||||
self.max_buffer_size = max_buffer_size
|
||||
self.partition_info = False # Do not return partition info in msgs
|
||||
self.fetch_max_wait_time = FETCH_MAX_WAIT_TIME
|
||||
self.fetch_min_bytes = fetch_size_bytes
|
||||
self.fetch_offsets = self.offsets.copy()
|
||||
self.iter_timeout = iter_timeout
|
||||
self.queue = Queue()
|
||||
|
||||
def __repr__(self):
|
||||
return '<SimpleConsumer group=%s, topic=%s, partitions=%s>' % \
|
||||
(self.group, self.topic, str(self.offsets.keys()))
|
||||
|
||||
def provide_partition_info(self):
|
||||
"""
|
||||
Indicates that partition info must be returned by the consumer
|
||||
"""
|
||||
self.partition_info = True
|
||||
|
||||
def seek(self, offset, whence):
|
||||
"""
|
||||
Alter the current offset in the consumer, similar to fseek
|
||||
|
||||
offset: how much to modify the offset
|
||||
whence: where to modify it from
|
||||
0 is relative to the earliest available offset (head)
|
||||
1 is relative to the current offset
|
||||
2 is relative to the latest known offset (tail)
|
||||
"""
|
||||
|
||||
if whence == 1: # relative to current position
|
||||
for partition, _offset in self.offsets.items():
|
||||
self.offsets[partition] = _offset + offset
|
||||
elif whence in (0, 2): # relative to beginning or end
|
||||
# divide the request offset by number of partitions,
|
||||
# distribute the remained evenly
|
||||
(delta, rem) = divmod(offset, len(self.offsets))
|
||||
deltas = {}
|
||||
for partition, r in izip_longest(self.offsets.keys(),
|
||||
repeat(1, rem), fillvalue=0):
|
||||
deltas[partition] = delta + r
|
||||
|
||||
reqs = []
|
||||
for partition in self.offsets.keys():
|
||||
if whence == 0:
|
||||
reqs.append(OffsetRequest(self.topic, partition, -2, 1))
|
||||
elif whence == 2:
|
||||
reqs.append(OffsetRequest(self.topic, partition, -1, 1))
|
||||
else:
|
||||
pass
|
||||
|
||||
resps = self.client.send_offset_request(reqs)
|
||||
for resp in resps:
|
||||
self.offsets[resp.partition] = \
|
||||
resp.offsets[0] + deltas[resp.partition]
|
||||
else:
|
||||
raise ValueError("Unexpected value for `whence`, %d" % whence)
|
||||
|
||||
# Reset queue and fetch offsets since they are invalid
|
||||
self.fetch_offsets = self.offsets.copy()
|
||||
if self.auto_commit:
|
||||
self.count_since_commit += 1
|
||||
self.commit()
|
||||
|
||||
self.queue = Queue()
|
||||
|
||||
def get_messages(self, count=1, block=True, timeout=0.1):
|
||||
"""
|
||||
Fetch the specified number of messages
|
||||
|
||||
count: Indicates the maximum number of messages to be fetched
|
||||
block: If True, the API will block till some messages are fetched.
|
||||
timeout: If block is True, the function will block for the specified
|
||||
time (in seconds) until count messages is fetched. If None,
|
||||
it will block forever.
|
||||
"""
|
||||
messages = []
|
||||
if timeout is not None:
|
||||
max_time = time.time() + timeout
|
||||
|
||||
new_offsets = {}
|
||||
while count > 0 and (timeout is None or timeout > 0):
|
||||
result = self._get_message(block, timeout, get_partition_info=True,
|
||||
update_offset=False)
|
||||
if result:
|
||||
partition, message = result
|
||||
if self.partition_info:
|
||||
messages.append(result)
|
||||
else:
|
||||
messages.append(message)
|
||||
new_offsets[partition] = message.offset + 1
|
||||
count -= 1
|
||||
else:
|
||||
# Ran out of messages for the last request.
|
||||
if not block:
|
||||
# If we're not blocking, break.
|
||||
break
|
||||
if timeout is not None:
|
||||
# If we're blocking and have a timeout, reduce it to the
|
||||
# appropriate value
|
||||
timeout = max_time - time.time()
|
||||
|
||||
# Update and commit offsets if necessary
|
||||
self.offsets.update(new_offsets)
|
||||
self.count_since_commit += len(messages)
|
||||
self._auto_commit()
|
||||
return messages
|
||||
|
||||
def get_message(self, block=True, timeout=0.1, get_partition_info=None):
|
||||
return self._get_message(block, timeout, get_partition_info)
|
||||
|
||||
def _get_message(self, block=True, timeout=0.1, get_partition_info=None,
|
||||
update_offset=True):
|
||||
"""
|
||||
If no messages can be fetched, returns None.
|
||||
If get_partition_info is None, it defaults to self.partition_info
|
||||
If get_partition_info is True, returns (partition, message)
|
||||
If get_partition_info is False, returns message
|
||||
"""
|
||||
if self.queue.empty():
|
||||
# We're out of messages, go grab some more.
|
||||
with FetchContext(self, block, timeout):
|
||||
self._fetch()
|
||||
try:
|
||||
partition, message = self.queue.get_nowait()
|
||||
|
||||
if update_offset:
|
||||
# Update partition offset
|
||||
self.offsets[partition] = message.offset + 1
|
||||
|
||||
# Count, check and commit messages if necessary
|
||||
self.count_since_commit += 1
|
||||
self._auto_commit()
|
||||
|
||||
if get_partition_info is None:
|
||||
get_partition_info = self.partition_info
|
||||
if get_partition_info:
|
||||
return partition, message
|
||||
else:
|
||||
return message
|
||||
except Empty:
|
||||
return None
|
||||
|
||||
def __iter__(self):
|
||||
if self.iter_timeout is None:
|
||||
timeout = ITER_TIMEOUT_SECONDS
|
||||
else:
|
||||
timeout = self.iter_timeout
|
||||
|
||||
while True:
|
||||
message = self.get_message(True, timeout)
|
||||
if message:
|
||||
yield message
|
||||
elif self.iter_timeout is None:
|
||||
# We did not receive any message yet but we don't have a
|
||||
# timeout, so give up the CPU for a while before trying again
|
||||
time.sleep(NO_MESSAGES_WAIT_TIME_SECONDS)
|
||||
else:
|
||||
# Timed out waiting for a message
|
||||
break
|
||||
|
||||
def _fetch(self):
|
||||
# Create fetch request payloads for all the partitions
|
||||
partitions = dict((p, self.buffer_size)
|
||||
for p in self.fetch_offsets.keys())
|
||||
while partitions:
|
||||
requests = []
|
||||
for partition, buffer_size in six.iteritems(partitions):
|
||||
requests.append(FetchRequest(self.topic, partition,
|
||||
self.fetch_offsets[partition],
|
||||
buffer_size))
|
||||
# Send request
|
||||
responses = self.client.send_fetch_request(
|
||||
requests,
|
||||
max_wait_time=int(self.fetch_max_wait_time),
|
||||
min_bytes=self.fetch_min_bytes)
|
||||
|
||||
retry_partitions = {}
|
||||
for resp in responses:
|
||||
partition = resp.partition
|
||||
buffer_size = partitions[partition]
|
||||
try:
|
||||
for message in resp.messages:
|
||||
# Put the message in our queue
|
||||
self.queue.put((partition, message))
|
||||
self.fetch_offsets[partition] = message.offset + 1
|
||||
except ConsumerFetchSizeTooSmall:
|
||||
if (self.max_buffer_size is not None and
|
||||
buffer_size == self.max_buffer_size):
|
||||
log.error("Max fetch size %d too small",
|
||||
self.max_buffer_size)
|
||||
raise
|
||||
if self.max_buffer_size is None:
|
||||
buffer_size *= 2
|
||||
else:
|
||||
buffer_size = max(buffer_size * 2,
|
||||
self.max_buffer_size)
|
||||
log.warn("Fetch size too small, increase to %d (2x) "
|
||||
"and retry", buffer_size)
|
||||
retry_partitions[partition] = buffer_size
|
||||
except ConsumerNoMoreData as e:
|
||||
log.debug("Iteration was ended by %r", e)
|
||||
except StopIteration:
|
||||
# Stop iterating through this partition
|
||||
log.debug("Done iterating over partition %s" % partition)
|
||||
partitions = retry_partitions
|
||||
@@ -1,58 +0,0 @@
|
||||
from itertools import cycle
|
||||
|
||||
|
||||
class Partitioner(object):
|
||||
"""
|
||||
Base class for a partitioner
|
||||
"""
|
||||
def __init__(self, partitions):
|
||||
"""
|
||||
Initialize the partitioner
|
||||
|
||||
partitions - A list of available partitions (during startup)
|
||||
"""
|
||||
self.partitions = partitions
|
||||
|
||||
def partition(self, key, partitions):
|
||||
"""
|
||||
Takes a string key and num_partitions as argument and returns
|
||||
a partition to be used for the message
|
||||
|
||||
partitions - The list of partitions is passed in every call. This
|
||||
may look like an overhead, but it will be useful
|
||||
(in future) when we handle cases like rebalancing
|
||||
"""
|
||||
raise NotImplementedError('partition function has to be implemented')
|
||||
|
||||
|
||||
class RoundRobinPartitioner(Partitioner):
|
||||
"""
|
||||
Implements a round robin partitioner which sends data to partitions
|
||||
in a round robin fashion
|
||||
"""
|
||||
def __init__(self, partitions):
|
||||
super(RoundRobinPartitioner, self).__init__(partitions)
|
||||
self.iterpart = cycle(partitions)
|
||||
|
||||
def _set_partitions(self, partitions):
|
||||
self.partitions = partitions
|
||||
self.iterpart = cycle(partitions)
|
||||
|
||||
def partition(self, key, partitions):
|
||||
# Refresh the partition list if necessary
|
||||
if self.partitions != partitions:
|
||||
self._set_partitions(partitions)
|
||||
|
||||
return next(self.iterpart)
|
||||
|
||||
|
||||
class HashedPartitioner(Partitioner):
|
||||
"""
|
||||
Implements a partitioner which selects the target partition based on
|
||||
the hash of the key
|
||||
"""
|
||||
def partition(self, key, partitions):
|
||||
size = len(partitions)
|
||||
idx = hash(key) % size
|
||||
|
||||
return partitions[idx]
|
||||
6
kafka/partitioner/__init__.py
Normal file
6
kafka/partitioner/__init__.py
Normal file
@@ -0,0 +1,6 @@
|
||||
from .roundrobin import RoundRobinPartitioner
|
||||
from .hashed import HashedPartitioner
|
||||
|
||||
__all__ = [
|
||||
'RoundRobinPartitioner', 'HashedPartitioner'
|
||||
]
|
||||
23
kafka/partitioner/base.py
Normal file
23
kafka/partitioner/base.py
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
class Partitioner(object):
|
||||
"""
|
||||
Base class for a partitioner
|
||||
"""
|
||||
def __init__(self, partitions):
|
||||
"""
|
||||
Initialize the partitioner
|
||||
|
||||
partitions - A list of available partitions (during startup)
|
||||
"""
|
||||
self.partitions = partitions
|
||||
|
||||
def partition(self, key, partitions):
|
||||
"""
|
||||
Takes a string key and num_partitions as argument and returns
|
||||
a partition to be used for the message
|
||||
|
||||
partitions - The list of partitions is passed in every call. This
|
||||
may look like an overhead, but it will be useful
|
||||
(in future) when we handle cases like rebalancing
|
||||
"""
|
||||
raise NotImplementedError('partition function has to be implemented')
|
||||
12
kafka/partitioner/hashed.py
Normal file
12
kafka/partitioner/hashed.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from .base import Partitioner
|
||||
|
||||
class HashedPartitioner(Partitioner):
|
||||
"""
|
||||
Implements a partitioner which selects the target partition based on
|
||||
the hash of the key
|
||||
"""
|
||||
def partition(self, key, partitions):
|
||||
size = len(partitions)
|
||||
idx = hash(key) % size
|
||||
|
||||
return partitions[idx]
|
||||
23
kafka/partitioner/roundrobin.py
Normal file
23
kafka/partitioner/roundrobin.py
Normal file
@@ -0,0 +1,23 @@
|
||||
from itertools import cycle
|
||||
|
||||
from .base import Partitioner
|
||||
|
||||
class RoundRobinPartitioner(Partitioner):
|
||||
"""
|
||||
Implements a round robin partitioner which sends data to partitions
|
||||
in a round robin fashion
|
||||
"""
|
||||
def __init__(self, partitions):
|
||||
super(RoundRobinPartitioner, self).__init__(partitions)
|
||||
self.iterpart = cycle(partitions)
|
||||
|
||||
def _set_partitions(self, partitions):
|
||||
self.partitions = partitions
|
||||
self.iterpart = cycle(partitions)
|
||||
|
||||
def partition(self, key, partitions):
|
||||
# Refresh the partition list if necessary
|
||||
if self.partitions != partitions:
|
||||
self._set_partitions(partitions)
|
||||
|
||||
return next(self.iterpart)
|
||||
6
kafka/producer/__init__.py
Normal file
6
kafka/producer/__init__.py
Normal file
@@ -0,0 +1,6 @@
|
||||
from .simple import SimpleProducer
|
||||
from .keyed import KeyedProducer
|
||||
|
||||
__all__ = [
|
||||
'SimpleProducer', 'KeyedProducer'
|
||||
]
|
||||
@@ -2,23 +2,19 @@ from __future__ import absolute_import
|
||||
|
||||
import logging
|
||||
import time
|
||||
import random
|
||||
|
||||
try:
|
||||
from queue import Empty
|
||||
except ImportError:
|
||||
from Queue import Empty
|
||||
from collections import defaultdict
|
||||
from itertools import cycle
|
||||
from multiprocessing import Queue, Process
|
||||
|
||||
import six
|
||||
from six.moves import xrange
|
||||
|
||||
from kafka.common import (
|
||||
ProduceRequest, TopicAndPartition, UnsupportedCodecError, UnknownTopicOrPartitionError
|
||||
ProduceRequest, TopicAndPartition, UnsupportedCodecError
|
||||
)
|
||||
from kafka.partitioner import HashedPartitioner
|
||||
from kafka.protocol import CODEC_NONE, ALL_CODECS, create_message_set
|
||||
|
||||
log = logging.getLogger("kafka")
|
||||
@@ -208,112 +204,3 @@ class Producer(object):
|
||||
|
||||
if self.proc.is_alive():
|
||||
self.proc.terminate()
|
||||
|
||||
|
||||
class SimpleProducer(Producer):
|
||||
"""
|
||||
A simple, round-robin producer. Each message goes to exactly one partition
|
||||
|
||||
Params:
|
||||
client - The Kafka client instance to use
|
||||
async - If True, the messages are sent asynchronously via another
|
||||
thread (process). We will not wait for a response to these
|
||||
req_acks - A value indicating the acknowledgements that the server must
|
||||
receive before responding to the request
|
||||
ack_timeout - Value (in milliseconds) indicating a timeout for waiting
|
||||
for an acknowledgement
|
||||
batch_send - If True, messages are send in batches
|
||||
batch_send_every_n - If set, messages are send in batches of this size
|
||||
batch_send_every_t - If set, messages are send after this timeout
|
||||
random_start - If true, randomize the initial partition which the
|
||||
the first message block will be published to, otherwise
|
||||
if false, the first message block will always publish
|
||||
to partition 0 before cycling through each partition
|
||||
"""
|
||||
def __init__(self, client, async=False,
|
||||
req_acks=Producer.ACK_AFTER_LOCAL_WRITE,
|
||||
ack_timeout=Producer.DEFAULT_ACK_TIMEOUT,
|
||||
codec=None,
|
||||
batch_send=False,
|
||||
batch_send_every_n=BATCH_SEND_MSG_COUNT,
|
||||
batch_send_every_t=BATCH_SEND_DEFAULT_INTERVAL,
|
||||
random_start=False):
|
||||
self.partition_cycles = {}
|
||||
self.random_start = random_start
|
||||
super(SimpleProducer, self).__init__(client, async, req_acks,
|
||||
ack_timeout, codec, batch_send,
|
||||
batch_send_every_n,
|
||||
batch_send_every_t)
|
||||
|
||||
def _next_partition(self, topic):
|
||||
if topic not in self.partition_cycles:
|
||||
if not self.client.has_metadata_for_topic(topic):
|
||||
self.client.load_metadata_for_topics(topic)
|
||||
|
||||
self.partition_cycles[topic] = cycle(self.client.get_partition_ids_for_topic(topic))
|
||||
|
||||
# Randomize the initial partition that is returned
|
||||
if self.random_start:
|
||||
num_partitions = len(self.client.get_partition_ids_for_topic(topic))
|
||||
for _ in xrange(random.randint(0, num_partitions-1)):
|
||||
next(self.partition_cycles[topic])
|
||||
|
||||
return next(self.partition_cycles[topic])
|
||||
|
||||
def send_messages(self, topic, *msg):
|
||||
partition = self._next_partition(topic)
|
||||
return super(SimpleProducer, self).send_messages(topic, partition, *msg)
|
||||
|
||||
def __repr__(self):
|
||||
return '<SimpleProducer batch=%s>' % self.async
|
||||
|
||||
|
||||
class KeyedProducer(Producer):
|
||||
"""
|
||||
A producer which distributes messages to partitions based on the key
|
||||
|
||||
Args:
|
||||
client - The kafka client instance
|
||||
partitioner - A partitioner class that will be used to get the partition
|
||||
to send the message to. Must be derived from Partitioner
|
||||
async - If True, the messages are sent asynchronously via another
|
||||
thread (process). We will not wait for a response to these
|
||||
ack_timeout - Value (in milliseconds) indicating a timeout for waiting
|
||||
for an acknowledgement
|
||||
batch_send - If True, messages are send in batches
|
||||
batch_send_every_n - If set, messages are send in batches of this size
|
||||
batch_send_every_t - If set, messages are send after this timeout
|
||||
"""
|
||||
def __init__(self, client, partitioner=None, async=False,
|
||||
req_acks=Producer.ACK_AFTER_LOCAL_WRITE,
|
||||
ack_timeout=Producer.DEFAULT_ACK_TIMEOUT,
|
||||
codec=None,
|
||||
batch_send=False,
|
||||
batch_send_every_n=BATCH_SEND_MSG_COUNT,
|
||||
batch_send_every_t=BATCH_SEND_DEFAULT_INTERVAL):
|
||||
if not partitioner:
|
||||
partitioner = HashedPartitioner
|
||||
self.partitioner_class = partitioner
|
||||
self.partitioners = {}
|
||||
|
||||
super(KeyedProducer, self).__init__(client, async, req_acks,
|
||||
ack_timeout, codec, batch_send,
|
||||
batch_send_every_n,
|
||||
batch_send_every_t)
|
||||
|
||||
def _next_partition(self, topic, key):
|
||||
if topic not in self.partitioners:
|
||||
if not self.client.has_metadata_for_topic(topic):
|
||||
self.client.load_metadata_for_topics(topic)
|
||||
|
||||
self.partitioners[topic] = self.partitioner_class(self.client.get_partition_ids_for_topic(topic))
|
||||
|
||||
partitioner = self.partitioners[topic]
|
||||
return partitioner.partition(key, self.client.get_partition_ids_for_topic(topic))
|
||||
|
||||
def send(self, topic, key, msg):
|
||||
partition = self._next_partition(topic, key)
|
||||
return self.send_messages(topic, partition, msg)
|
||||
|
||||
def __repr__(self):
|
||||
return '<KeyedProducer batch=%s>' % self.async
|
||||
62
kafka/producer/keyed.py
Normal file
62
kafka/producer/keyed.py
Normal file
@@ -0,0 +1,62 @@
|
||||
from __future__ import absolute_import
|
||||
|
||||
import logging
|
||||
|
||||
from kafka.partitioner import HashedPartitioner
|
||||
from .base import (
|
||||
Producer, BATCH_SEND_DEFAULT_INTERVAL,
|
||||
BATCH_SEND_MSG_COUNT
|
||||
)
|
||||
|
||||
log = logging.getLogger("kafka")
|
||||
|
||||
|
||||
class KeyedProducer(Producer):
|
||||
"""
|
||||
A producer which distributes messages to partitions based on the key
|
||||
|
||||
Args:
|
||||
client - The kafka client instance
|
||||
partitioner - A partitioner class that will be used to get the partition
|
||||
to send the message to. Must be derived from Partitioner
|
||||
async - If True, the messages are sent asynchronously via another
|
||||
thread (process). We will not wait for a response to these
|
||||
ack_timeout - Value (in milliseconds) indicating a timeout for waiting
|
||||
for an acknowledgement
|
||||
batch_send - If True, messages are send in batches
|
||||
batch_send_every_n - If set, messages are send in batches of this size
|
||||
batch_send_every_t - If set, messages are send after this timeout
|
||||
"""
|
||||
def __init__(self, client, partitioner=None, async=False,
|
||||
req_acks=Producer.ACK_AFTER_LOCAL_WRITE,
|
||||
ack_timeout=Producer.DEFAULT_ACK_TIMEOUT,
|
||||
codec=None,
|
||||
batch_send=False,
|
||||
batch_send_every_n=BATCH_SEND_MSG_COUNT,
|
||||
batch_send_every_t=BATCH_SEND_DEFAULT_INTERVAL):
|
||||
if not partitioner:
|
||||
partitioner = HashedPartitioner
|
||||
self.partitioner_class = partitioner
|
||||
self.partitioners = {}
|
||||
|
||||
super(KeyedProducer, self).__init__(client, async, req_acks,
|
||||
ack_timeout, codec, batch_send,
|
||||
batch_send_every_n,
|
||||
batch_send_every_t)
|
||||
|
||||
def _next_partition(self, topic, key):
|
||||
if topic not in self.partitioners:
|
||||
if not self.client.has_metadata_for_topic(topic):
|
||||
self.client.load_metadata_for_topics(topic)
|
||||
|
||||
self.partitioners[topic] = self.partitioner_class(self.client.get_partition_ids_for_topic(topic))
|
||||
|
||||
partitioner = self.partitioners[topic]
|
||||
return partitioner.partition(key, self.client.get_partition_ids_for_topic(topic))
|
||||
|
||||
def send(self, topic, key, msg):
|
||||
partition = self._next_partition(topic, key)
|
||||
return self.send_messages(topic, partition, msg)
|
||||
|
||||
def __repr__(self):
|
||||
return '<KeyedProducer batch=%s>' % self.async
|
||||
73
kafka/producer/simple.py
Normal file
73
kafka/producer/simple.py
Normal file
@@ -0,0 +1,73 @@
|
||||
from __future__ import absolute_import
|
||||
|
||||
import logging
|
||||
import random
|
||||
|
||||
from itertools import cycle
|
||||
|
||||
from six.moves import xrange
|
||||
|
||||
from .base import (
|
||||
Producer, BATCH_SEND_DEFAULT_INTERVAL,
|
||||
BATCH_SEND_MSG_COUNT
|
||||
)
|
||||
|
||||
log = logging.getLogger("kafka")
|
||||
|
||||
|
||||
class SimpleProducer(Producer):
|
||||
"""
|
||||
A simple, round-robin producer. Each message goes to exactly one partition
|
||||
|
||||
Params:
|
||||
client - The Kafka client instance to use
|
||||
async - If True, the messages are sent asynchronously via another
|
||||
thread (process). We will not wait for a response to these
|
||||
req_acks - A value indicating the acknowledgements that the server must
|
||||
receive before responding to the request
|
||||
ack_timeout - Value (in milliseconds) indicating a timeout for waiting
|
||||
for an acknowledgement
|
||||
batch_send - If True, messages are send in batches
|
||||
batch_send_every_n - If set, messages are send in batches of this size
|
||||
batch_send_every_t - If set, messages are send after this timeout
|
||||
random_start - If true, randomize the initial partition which the
|
||||
the first message block will be published to, otherwise
|
||||
if false, the first message block will always publish
|
||||
to partition 0 before cycling through each partition
|
||||
"""
|
||||
def __init__(self, client, async=False,
|
||||
req_acks=Producer.ACK_AFTER_LOCAL_WRITE,
|
||||
ack_timeout=Producer.DEFAULT_ACK_TIMEOUT,
|
||||
codec=None,
|
||||
batch_send=False,
|
||||
batch_send_every_n=BATCH_SEND_MSG_COUNT,
|
||||
batch_send_every_t=BATCH_SEND_DEFAULT_INTERVAL,
|
||||
random_start=False):
|
||||
self.partition_cycles = {}
|
||||
self.random_start = random_start
|
||||
super(SimpleProducer, self).__init__(client, async, req_acks,
|
||||
ack_timeout, codec, batch_send,
|
||||
batch_send_every_n,
|
||||
batch_send_every_t)
|
||||
|
||||
def _next_partition(self, topic):
|
||||
if topic not in self.partition_cycles:
|
||||
if not self.client.has_metadata_for_topic(topic):
|
||||
self.client.load_metadata_for_topics(topic)
|
||||
|
||||
self.partition_cycles[topic] = cycle(self.client.get_partition_ids_for_topic(topic))
|
||||
|
||||
# Randomize the initial partition that is returned
|
||||
if self.random_start:
|
||||
num_partitions = len(self.client.get_partition_ids_for_topic(topic))
|
||||
for _ in xrange(random.randint(0, num_partitions-1)):
|
||||
next(self.partition_cycles[topic])
|
||||
|
||||
return next(self.partition_cycles[topic])
|
||||
|
||||
def send_messages(self, topic, *msg):
|
||||
partition = self._next_partition(topic)
|
||||
return super(SimpleProducer, self).send_messages(topic, partition, *msg)
|
||||
|
||||
def __repr__(self):
|
||||
return '<SimpleProducer batch=%s>' % self.async
|
||||
@@ -4,7 +4,7 @@ from six.moves import xrange
|
||||
|
||||
from kafka import SimpleConsumer, MultiProcessConsumer, create_message
|
||||
from kafka.common import ProduceRequest, ConsumerFetchSizeTooSmall
|
||||
from kafka.consumer import MAX_FETCH_BUFFER_SIZE_BYTES
|
||||
from kafka.consumer.base import MAX_FETCH_BUFFER_SIZE_BYTES
|
||||
|
||||
from test.fixtures import ZookeeperFixture, KafkaFixture
|
||||
from test.testutil import (
|
||||
|
||||
@@ -6,7 +6,7 @@ from . import unittest
|
||||
|
||||
from kafka import KafkaClient, SimpleConsumer
|
||||
from kafka.common import TopicAndPartition, FailedPayloadsError, ConnectionError
|
||||
from kafka.producer import Producer
|
||||
from kafka.producer.base import Producer
|
||||
|
||||
from test.fixtures import ZookeeperFixture, KafkaFixture
|
||||
from test.testutil import (
|
||||
|
||||
@@ -5,7 +5,7 @@ import logging
|
||||
from mock import MagicMock
|
||||
from . import unittest
|
||||
|
||||
from kafka.producer import Producer
|
||||
from kafka.producer.base import Producer
|
||||
|
||||
class TestKafkaProducer(unittest.TestCase):
|
||||
def test_producer_message_types(self):
|
||||
|
||||
Reference in New Issue
Block a user