Adapt benchmark scripts from https://github.com/mrafayaleem/kafka-jython
This commit is contained in:
parent
bea1a2adac
commit
7a2ec3332b
179
benchmarks/consumer_performance.py
Executable file
179
benchmarks/consumer_performance.py
Executable file
@ -0,0 +1,179 @@
|
||||
#!/usr/bin/env python
|
||||
# Adapted from https://github.com/mrafayaleem/kafka-jython
|
||||
|
||||
from __future__ import absolute_import, print_function
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import pprint
|
||||
import sys
|
||||
import threading
|
||||
import traceback
|
||||
|
||||
from kafka import KafkaConsumer, KafkaProducer
|
||||
from test.fixtures import KafkaFixture, ZookeeperFixture
|
||||
|
||||
logging.basicConfig(level=logging.ERROR)
|
||||
|
||||
|
||||
def start_brokers(n):
|
||||
print('Starting {0} {1}-node cluster...'.format(KafkaFixture.kafka_version, n))
|
||||
print('-> 1 Zookeeper')
|
||||
zk = ZookeeperFixture.instance()
|
||||
print('---> {0}:{1}'.format(zk.host, zk.port))
|
||||
print()
|
||||
|
||||
partitions = min(n, 3)
|
||||
replicas = min(n, 3)
|
||||
print('-> {0} Brokers [{1} partitions / {2} replicas]'.format(n, partitions, replicas))
|
||||
brokers = [
|
||||
KafkaFixture.instance(i, zk.host, zk.port, zk_chroot='',
|
||||
partitions=partitions, replicas=replicas)
|
||||
for i in range(n)
|
||||
]
|
||||
for broker in brokers:
|
||||
print('---> {0}:{1}'.format(broker.host, broker.port))
|
||||
print()
|
||||
return brokers
|
||||
|
||||
|
||||
class ConsumerPerformance(object):
|
||||
|
||||
@staticmethod
|
||||
def run(args):
|
||||
try:
|
||||
props = {}
|
||||
for prop in args.consumer_config:
|
||||
k, v = prop.split('=')
|
||||
try:
|
||||
v = int(v)
|
||||
except ValueError:
|
||||
pass
|
||||
if v == 'None':
|
||||
v = None
|
||||
props[k] = v
|
||||
|
||||
if args.brokers:
|
||||
brokers = start_brokers(args.brokers)
|
||||
props['bootstrap_servers'] = ['{0}:{1}'.format(broker.host, broker.port)
|
||||
for broker in brokers]
|
||||
print('---> bootstrap_servers={0}'.format(props['bootstrap_servers']))
|
||||
print()
|
||||
|
||||
print('-> Producing records')
|
||||
record = bytes(bytearray(args.record_size))
|
||||
producer = KafkaProducer(compression_type=args.fixture_compression,
|
||||
**props)
|
||||
for i in xrange(args.num_records):
|
||||
producer.send(topic=args.topic, value=record)
|
||||
producer.flush()
|
||||
producer.close()
|
||||
print('-> OK!')
|
||||
print()
|
||||
|
||||
print('Initializing Consumer...')
|
||||
props['auto_offset_reset'] = 'earliest'
|
||||
if 'consumer_timeout_ms' not in props:
|
||||
props['consumer_timeout_ms'] = 10000
|
||||
props['metrics_sample_window_ms'] = args.stats_interval * 1000
|
||||
for k, v in props.items():
|
||||
print('---> {0}={1}'.format(k, v))
|
||||
consumer = KafkaConsumer(args.topic, **props)
|
||||
print('---> group_id={0}'.format(consumer.config['group_id']))
|
||||
print('---> report stats every {0} secs'.format(args.stats_interval))
|
||||
print('---> raw metrics? {0}'.format(args.raw_metrics))
|
||||
timer_stop = threading.Event()
|
||||
timer = StatsReporter(args.stats_interval, consumer,
|
||||
event=timer_stop,
|
||||
raw_metrics=args.raw_metrics)
|
||||
timer.start()
|
||||
print('-> OK!')
|
||||
print()
|
||||
|
||||
records = 0
|
||||
for msg in consumer:
|
||||
records += 1
|
||||
if records >= args.num_records:
|
||||
break
|
||||
print('Consumed {0} records'.format(records))
|
||||
|
||||
timer_stop.set()
|
||||
|
||||
except Exception:
|
||||
exc_info = sys.exc_info()
|
||||
traceback.print_exception(*exc_info)
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
class StatsReporter(threading.Thread):
|
||||
def __init__(self, interval, consumer, event=None, raw_metrics=False):
|
||||
super(StatsReporter, self).__init__()
|
||||
self.interval = interval
|
||||
self.consumer = consumer
|
||||
self.event = event
|
||||
self.raw_metrics = raw_metrics
|
||||
|
||||
def print_stats(self):
|
||||
metrics = self.consumer.metrics()
|
||||
if self.raw_metrics:
|
||||
pprint.pprint(metrics)
|
||||
else:
|
||||
print('{records-consumed-rate} records/sec ({bytes-consumed-rate} B/sec),'
|
||||
' {fetch-latency-avg} latency,'
|
||||
' {fetch-rate} fetch/s,'
|
||||
' {fetch-size-avg} fetch size,'
|
||||
' {records-lag-max} max record lag,'
|
||||
' {records-per-request-avg} records/req'
|
||||
.format(**metrics['consumer-fetch-manager-metrics']))
|
||||
|
||||
|
||||
def print_final(self):
|
||||
self.print_stats()
|
||||
|
||||
def run(self):
|
||||
while self.event and not self.event.wait(self.interval):
|
||||
self.print_stats()
|
||||
else:
|
||||
self.print_final()
|
||||
|
||||
|
||||
def get_args_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='This tool is used to verify the consumer performance.')
|
||||
|
||||
parser.add_argument(
|
||||
'--topic', type=str,
|
||||
help='Topic for consumer test',
|
||||
default='kafka-python-benchmark-test')
|
||||
parser.add_argument(
|
||||
'--num-records', type=long,
|
||||
help='number of messages to consume',
|
||||
default=1000000)
|
||||
parser.add_argument(
|
||||
'--record-size', type=int,
|
||||
help='message size in bytes',
|
||||
default=100)
|
||||
parser.add_argument(
|
||||
'--consumer-config', type=str, nargs='+', default=(),
|
||||
help='kafka consumer related configuaration properties like '
|
||||
'bootstrap_servers,client_id etc..')
|
||||
parser.add_argument(
|
||||
'--fixture-compression', type=str,
|
||||
help='specify a compression type for use with broker fixtures / producer')
|
||||
parser.add_argument(
|
||||
'--brokers', type=int,
|
||||
help='Number of kafka brokers to start',
|
||||
default=0)
|
||||
parser.add_argument(
|
||||
'--stats-interval', type=int,
|
||||
help='Interval in seconds for stats reporting to console',
|
||||
default=5)
|
||||
parser.add_argument(
|
||||
'--raw-metrics', action='store_true',
|
||||
help='Enable this flag to print full metrics dict on each interval')
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = get_args_parser().parse_args()
|
||||
ConsumerPerformance.run(args)
|
158
benchmarks/producer_performance.py
Executable file
158
benchmarks/producer_performance.py
Executable file
@ -0,0 +1,158 @@
|
||||
#!/usr/bin/env python
|
||||
# Adapted from https://github.com/mrafayaleem/kafka-jython
|
||||
|
||||
from __future__ import absolute_import, print_function
|
||||
|
||||
import argparse
|
||||
import pprint
|
||||
import sys
|
||||
import threading
|
||||
import traceback
|
||||
|
||||
from kafka import KafkaProducer
|
||||
from test.fixtures import KafkaFixture, ZookeeperFixture
|
||||
|
||||
|
||||
def start_brokers(n):
|
||||
print('Starting {0} {1}-node cluster...'.format(KafkaFixture.kafka_version, n))
|
||||
print('-> 1 Zookeeper')
|
||||
zk = ZookeeperFixture.instance()
|
||||
print('---> {0}:{1}'.format(zk.host, zk.port))
|
||||
print()
|
||||
|
||||
partitions = min(n, 3)
|
||||
replicas = min(n, 3)
|
||||
print('-> {0} Brokers [{1} partitions / {2} replicas]'.format(n, partitions, replicas))
|
||||
brokers = [
|
||||
KafkaFixture.instance(i, zk.host, zk.port, zk_chroot='',
|
||||
partitions=partitions, replicas=replicas)
|
||||
for i in range(n)
|
||||
]
|
||||
for broker in brokers:
|
||||
print('---> {0}:{1}'.format(broker.host, broker.port))
|
||||
print()
|
||||
return brokers
|
||||
|
||||
|
||||
class ProducerPerformance(object):
|
||||
|
||||
@staticmethod
|
||||
def run(args):
|
||||
try:
|
||||
props = {}
|
||||
for prop in args.producer_config:
|
||||
k, v = prop.split('=')
|
||||
try:
|
||||
v = int(v)
|
||||
except ValueError:
|
||||
pass
|
||||
if v == 'None':
|
||||
v = None
|
||||
props[k] = v
|
||||
|
||||
if args.brokers:
|
||||
brokers = start_brokers(args.brokers)
|
||||
props['bootstrap_servers'] = ['{0}:{1}'.format(broker.host, broker.port)
|
||||
for broker in brokers]
|
||||
print("---> bootstrap_servers={0}".format(props['bootstrap_servers']))
|
||||
print()
|
||||
print('-> OK!')
|
||||
print()
|
||||
|
||||
print('Initializing producer...')
|
||||
record = bytes(bytearray(args.record_size))
|
||||
props['metrics_sample_window_ms'] = args.stats_interval * 1000
|
||||
|
||||
producer = KafkaProducer(**props)
|
||||
for k, v in props.items():
|
||||
print('---> {0}={1}'.format(k, v))
|
||||
print('---> send {0} byte records'.format(args.record_size))
|
||||
print('---> report stats every {0} secs'.format(args.stats_interval))
|
||||
print('---> raw metrics? {0}'.format(args.raw_metrics))
|
||||
timer_stop = threading.Event()
|
||||
timer = StatsReporter(args.stats_interval, producer,
|
||||
event=timer_stop,
|
||||
raw_metrics=args.raw_metrics)
|
||||
timer.start()
|
||||
print('-> OK!')
|
||||
print()
|
||||
|
||||
for i in xrange(args.num_records):
|
||||
producer.send(topic=args.topic, value=record)
|
||||
producer.flush()
|
||||
|
||||
timer_stop.set()
|
||||
|
||||
except Exception:
|
||||
exc_info = sys.exc_info()
|
||||
traceback.print_exception(*exc_info)
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
class StatsReporter(threading.Thread):
|
||||
def __init__(self, interval, producer, event=None, raw_metrics=False):
|
||||
super(StatsReporter, self).__init__()
|
||||
self.interval = interval
|
||||
self.producer = producer
|
||||
self.event = event
|
||||
self.raw_metrics = raw_metrics
|
||||
|
||||
def print_stats(self):
|
||||
metrics = self.producer.metrics()
|
||||
if self.raw_metrics:
|
||||
pprint.pprint(metrics)
|
||||
else:
|
||||
print('{record-send-rate} records/sec ({byte-rate} B/sec),'
|
||||
' {request-latency-avg} latency,'
|
||||
' {record-size-avg} record size,'
|
||||
' {batch-size-avg} batch size,'
|
||||
' {records-per-request-avg} records/req'
|
||||
.format(**metrics['producer-metrics']))
|
||||
|
||||
def print_final(self):
|
||||
self.print_stats()
|
||||
|
||||
def run(self):
|
||||
while self.event and not self.event.wait(self.interval):
|
||||
self.print_stats()
|
||||
else:
|
||||
self.print_final()
|
||||
|
||||
|
||||
def get_args_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='This tool is used to verify the producer performance.')
|
||||
|
||||
parser.add_argument(
|
||||
'--topic', type=str,
|
||||
help='Topic name for test',
|
||||
default='kafka-python-benchmark-test')
|
||||
parser.add_argument(
|
||||
'--num-records', type=long,
|
||||
help='number of messages to produce',
|
||||
default=1000000)
|
||||
parser.add_argument(
|
||||
'--record-size', type=int,
|
||||
help='message size in bytes',
|
||||
default=100)
|
||||
parser.add_argument(
|
||||
'--producer-config', type=str, nargs='+', default=(),
|
||||
help='kafka producer related configuaration properties like '
|
||||
'bootstrap_servers,client_id etc..')
|
||||
parser.add_argument(
|
||||
'--brokers', type=int,
|
||||
help='Number of kafka brokers to start',
|
||||
default=0)
|
||||
parser.add_argument(
|
||||
'--stats-interval', type=int,
|
||||
help='Interval in seconds for stats reporting to console',
|
||||
default=5)
|
||||
parser.add_argument(
|
||||
'--raw-metrics', action='store_true',
|
||||
help='Enable this flag to print full metrics dict on each interval')
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = get_args_parser().parse_args()
|
||||
ProducerPerformance.run(args)
|
Loading…
Reference in New Issue
Block a user