180 lines
6.0 KiB
Python
Executable File
180 lines
6.0 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Adapted from https://github.com/mrafayaleem/kafka-jython
|
|
|
|
from __future__ import absolute_import, print_function
|
|
|
|
import argparse
|
|
import logging
|
|
import pprint
|
|
import sys
|
|
import threading
|
|
import traceback
|
|
|
|
from kafka import KafkaConsumer, KafkaProducer
|
|
from test.fixtures import KafkaFixture, ZookeeperFixture
|
|
|
|
logging.basicConfig(level=logging.ERROR)
|
|
|
|
|
|
def start_brokers(n):
|
|
print('Starting {0} {1}-node cluster...'.format(KafkaFixture.kafka_version, n))
|
|
print('-> 1 Zookeeper')
|
|
zk = ZookeeperFixture.instance()
|
|
print('---> {0}:{1}'.format(zk.host, zk.port))
|
|
print()
|
|
|
|
partitions = min(n, 3)
|
|
replicas = min(n, 3)
|
|
print('-> {0} Brokers [{1} partitions / {2} replicas]'.format(n, partitions, replicas))
|
|
brokers = [
|
|
KafkaFixture.instance(i, zk.host, zk.port, zk_chroot='',
|
|
partitions=partitions, replicas=replicas)
|
|
for i in range(n)
|
|
]
|
|
for broker in brokers:
|
|
print('---> {0}:{1}'.format(broker.host, broker.port))
|
|
print()
|
|
return brokers
|
|
|
|
|
|
class ConsumerPerformance(object):
|
|
|
|
@staticmethod
|
|
def run(args):
|
|
try:
|
|
props = {}
|
|
for prop in args.consumer_config:
|
|
k, v = prop.split('=')
|
|
try:
|
|
v = int(v)
|
|
except ValueError:
|
|
pass
|
|
if v == 'None':
|
|
v = None
|
|
props[k] = v
|
|
|
|
if args.brokers:
|
|
brokers = start_brokers(args.brokers)
|
|
props['bootstrap_servers'] = ['{0}:{1}'.format(broker.host, broker.port)
|
|
for broker in brokers]
|
|
print('---> bootstrap_servers={0}'.format(props['bootstrap_servers']))
|
|
print()
|
|
|
|
print('-> Producing records')
|
|
record = bytes(bytearray(args.record_size))
|
|
producer = KafkaProducer(compression_type=args.fixture_compression,
|
|
**props)
|
|
for i in xrange(args.num_records):
|
|
producer.send(topic=args.topic, value=record)
|
|
producer.flush()
|
|
producer.close()
|
|
print('-> OK!')
|
|
print()
|
|
|
|
print('Initializing Consumer...')
|
|
props['auto_offset_reset'] = 'earliest'
|
|
if 'consumer_timeout_ms' not in props:
|
|
props['consumer_timeout_ms'] = 10000
|
|
props['metrics_sample_window_ms'] = args.stats_interval * 1000
|
|
for k, v in props.items():
|
|
print('---> {0}={1}'.format(k, v))
|
|
consumer = KafkaConsumer(args.topic, **props)
|
|
print('---> group_id={0}'.format(consumer.config['group_id']))
|
|
print('---> report stats every {0} secs'.format(args.stats_interval))
|
|
print('---> raw metrics? {0}'.format(args.raw_metrics))
|
|
timer_stop = threading.Event()
|
|
timer = StatsReporter(args.stats_interval, consumer,
|
|
event=timer_stop,
|
|
raw_metrics=args.raw_metrics)
|
|
timer.start()
|
|
print('-> OK!')
|
|
print()
|
|
|
|
records = 0
|
|
for msg in consumer:
|
|
records += 1
|
|
if records >= args.num_records:
|
|
break
|
|
print('Consumed {0} records'.format(records))
|
|
|
|
timer_stop.set()
|
|
|
|
except Exception:
|
|
exc_info = sys.exc_info()
|
|
traceback.print_exception(*exc_info)
|
|
sys.exit(1)
|
|
|
|
|
|
class StatsReporter(threading.Thread):
|
|
def __init__(self, interval, consumer, event=None, raw_metrics=False):
|
|
super(StatsReporter, self).__init__()
|
|
self.interval = interval
|
|
self.consumer = consumer
|
|
self.event = event
|
|
self.raw_metrics = raw_metrics
|
|
|
|
def print_stats(self):
|
|
metrics = self.consumer.metrics()
|
|
if self.raw_metrics:
|
|
pprint.pprint(metrics)
|
|
else:
|
|
print('{records-consumed-rate} records/sec ({bytes-consumed-rate} B/sec),'
|
|
' {fetch-latency-avg} latency,'
|
|
' {fetch-rate} fetch/s,'
|
|
' {fetch-size-avg} fetch size,'
|
|
' {records-lag-max} max record lag,'
|
|
' {records-per-request-avg} records/req'
|
|
.format(**metrics['consumer-fetch-manager-metrics']))
|
|
|
|
|
|
def print_final(self):
|
|
self.print_stats()
|
|
|
|
def run(self):
|
|
while self.event and not self.event.wait(self.interval):
|
|
self.print_stats()
|
|
else:
|
|
self.print_final()
|
|
|
|
|
|
def get_args_parser():
|
|
parser = argparse.ArgumentParser(
|
|
description='This tool is used to verify the consumer performance.')
|
|
|
|
parser.add_argument(
|
|
'--topic', type=str,
|
|
help='Topic for consumer test',
|
|
default='kafka-python-benchmark-test')
|
|
parser.add_argument(
|
|
'--num-records', type=long,
|
|
help='number of messages to consume',
|
|
default=1000000)
|
|
parser.add_argument(
|
|
'--record-size', type=int,
|
|
help='message size in bytes',
|
|
default=100)
|
|
parser.add_argument(
|
|
'--consumer-config', type=str, nargs='+', default=(),
|
|
help='kafka consumer related configuaration properties like '
|
|
'bootstrap_servers,client_id etc..')
|
|
parser.add_argument(
|
|
'--fixture-compression', type=str,
|
|
help='specify a compression type for use with broker fixtures / producer')
|
|
parser.add_argument(
|
|
'--brokers', type=int,
|
|
help='Number of kafka brokers to start',
|
|
default=0)
|
|
parser.add_argument(
|
|
'--stats-interval', type=int,
|
|
help='Interval in seconds for stats reporting to console',
|
|
default=5)
|
|
parser.add_argument(
|
|
'--raw-metrics', action='store_true',
|
|
help='Enable this flag to print full metrics dict on each interval')
|
|
return parser
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = get_args_parser().parse_args()
|
|
ConsumerPerformance.run(args)
|