Kafka Python client
This module provides low-level protocol support for Apache Kafka as well as high-level consumer and producer classes. Request batching is supported by the protocol as well as broker-aware request routing. Gzip and Snappy compression is also supported for message sets.
On Freenode IRC at #kafka-python, as well as #apache-kafka
For general discussion of kafka-client design and implementation (not python specific), see https://groups.google.com/forum/m/#!forum/kafka-clients
License
Copyright 2014, David Arthur under Apache License, v2.0. See LICENSE
Status
The current version of this package is 0.9.2 and is compatible with
Kafka broker versions
- 0.8.0
- 0.8.1
- 0.8.1.1
Python versions
- 2.6.9
- 2.7.6
- pypy 2.2.1
Usage
High level
from kafka.client import KafkaClient
from kafka.consumer import SimpleConsumer
from kafka.producer import SimpleProducer, KeyedProducer
kafka = KafkaClient("localhost:9092")
# To send messages synchronously
producer = SimpleProducer(kafka)
# Note that the application is responsible for encoding messages to type str
producer.send_messages("my-topic", "some message")
producer.send_messages("my-topic", "this method", "is variadic")
# Send unicode message
producer.send_messages("my-topic", u'你怎么样?'.encode('utf-8'))
# To send messages asynchronously
# WARNING: current implementation does not guarantee message delivery on failure!
# messages can get dropped! Use at your own risk! Or help us improve with a PR!
producer = SimpleProducer(kafka, async=True)
producer.send_messages("my-topic", "async message")
# To wait for acknowledgements
# ACK_AFTER_LOCAL_WRITE : server will wait till the data is written to
# a local log before sending response
# ACK_AFTER_CLUSTER_COMMIT : server will block until the message is committed
# by all in sync replicas before sending a response
producer = SimpleProducer(kafka, async=False,
req_acks=SimpleProducer.ACK_AFTER_LOCAL_WRITE,
ack_timeout=2000)
response = producer.send_messages("my-topic", "another message")
if response:
print(response[0].error)
print(response[0].offset)
# To send messages in batch. You can use any of the available
# producers for doing this. The following producer will collect
# messages in batch and send them to Kafka after 20 messages are
# collected or every 60 seconds
# Notes:
# * If the producer dies before the messages are sent, there will be losses
# * Call producer.stop() to send the messages and cleanup
producer = SimpleProducer(kafka, batch_send=True,
batch_send_every_n=20,
batch_send_every_t=60)
# To consume messages
consumer = SimpleConsumer(kafka, "my-group", "my-topic")
for message in consumer:
# message is raw byte string -- decode if necessary!
# e.g., for unicode: `message.decode('utf-8')`
print(message)
kafka.close()
Keyed messages
from kafka.client import KafkaClient
from kafka.producer import KeyedProducer
from kafka.partitioner import HashedPartitioner, RoundRobinPartitioner
kafka = KafkaClient("localhost:9092")
# HashedPartitioner is default
producer = KeyedProducer(kafka)
producer.send("my-topic", "key1", "some message")
producer.send("my-topic", "key2", "this methode")
producer = KeyedProducer(kafka, partitioner=RoundRobinPartitioner)
Multiprocess consumer
from kafka.client import KafkaClient
from kafka.consumer import MultiProcessConsumer
kafka = KafkaClient("localhost:9092")
# This will split the number of partitions among two processes
consumer = MultiProcessConsumer(kafka, "my-group", "my-topic", num_procs=2)
# This will spawn processes such that each handles 2 partitions max
consumer = MultiProcessConsumer(kafka, "my-group", "my-topic",
partitions_per_proc=2)
for message in consumer:
print(message)
for message in consumer.get_messages(count=5, block=True, timeout=4):
print(message)
Low level
from kafka.client import KafkaClient
kafka = KafkaClient("localhost:9092")
req = ProduceRequest(topic="my-topic", partition=1,
messages=[KafkaProdocol.encode_message("some message")])
resps = kafka.send_produce_request(payloads=[req], fail_on_error=True)
kafka.close()
resps[0].topic # "my-topic"
resps[0].partition # 1
resps[0].error # 0 (hopefully)
resps[0].offset # offset of the first message sent in this request
Install
Install with your favorite package manager
Pip:
git clone https://github.com/mumrah/kafka-python
pip install ./kafka-python
Setuptools:
git clone https://github.com/mumrah/kafka-python
easy_install ./kafka-python
Using setup.py
directly:
git clone https://github.com/mumrah/kafka-python
cd kafka-python
python setup.py install
Optional Snappy install
Install Development Libraries
Download and build Snappy from http://code.google.com/p/snappy/downloads/list
Ubuntu:
apt-get install libsnappy-dev
OSX:
brew install snappy
From Source:
wget http://snappy.googlecode.com/files/snappy-1.0.5.tar.gz
tar xzvf snappy-1.0.5.tar.gz
cd snappy-1.0.5
./configure
make
sudo make install
Install Python Module
Install the python-snappy
module
pip install python-snappy
Tests
Run the unit tests
tox
Run a single unit test
tox -e py27 -- -v --with-id 102
Run the integration tests
The integration tests will actually start up real local Zookeeper instance and Kafka brokers, and send messages in using the client.
First, get the kafka binaries for integration testing:
./build_integration.sh
By default, the build_integration.sh script will download binary distributions for all supported kafka versions. To test against the latest source build, set KAFKA_VERSION=trunk and optionally set SCALA_VERSION (defaults to 2.8.0, but 2.10.1 is recommended)
SCALA_VERSION=2.10.1 KAFKA_VERSION=trunk ./build_integration.sh
Then run the tests against supported Kafka versions:
KAFKA_VERSION=0.8.0 tox
KAFKA_VERSION=0.8.1 tox
KAFKA_VERSION=0.8.1.1 tox
KAFKA_VERSION=trunk tox