Merge "Refactor task/flow flattening"

This commit is contained in:
Jenkins
2014-02-03 22:17:26 +00:00
committed by Gerrit Code Review

View File

@@ -16,8 +16,8 @@
# License for the specific language governing permissions and limitations
# under the License.
import copy
import logging
import threading
import networkx as nx
@@ -27,6 +27,7 @@ from taskflow.patterns import linear_flow as lf
from taskflow.patterns import unordered_flow as uf
from taskflow import task
from taskflow.utils import graph_utils as gu
from taskflow.utils import lock_utils as lu
from taskflow.utils import misc
LOG = logging.getLogger(__name__)
@@ -39,15 +40,123 @@ FLATTEN_EDGE_DATA = {
}
def _graph_name(flow):
return "F:%s" % flow.name
class Flattener(object):
def __init__(self, root, freeze=True):
self._root = root
self._graph = None
self._history = set()
self._freeze = bool(freeze)
self._lock = threading.Lock()
self._edge_data = FLATTEN_EDGE_DATA.copy()
def _add_new_edges(self, graph, nodes_from, nodes_to, edge_attrs=None):
"""Adds new edges from nodes to other nodes in the specified graph,
with the following edge attributes (defaulting to the class provided
edge_data if None), if the edge does not already exist.
"""
if edge_attrs is None:
edge_attrs = self._edge_data
else:
edge_attrs = edge_attrs.copy()
edge_attrs.update(self._edge_data)
for u in nodes_from:
for v in nodes_to:
if not graph.has_edge(u, v):
# NOTE(harlowja): give each edge its own attr copy so that
# if it's later modified that the same copy isn't modified.
graph.add_edge(u, v, attr_dict=edge_attrs.copy())
def _log_flatten(func):
def _flatten(self, item):
functor = self._find_flattener(item)
if not functor:
raise TypeError("Unknown type requested to flatten: %s (%s)"
% (item, type(item)))
self._pre_item_flatten(item)
graph = functor(item)
self._post_item_flatten(item, graph)
return graph
@misc.wraps(func)
def wrapper(item, flattened):
graph = func(item, flattened)
def _find_flattener(self, item):
"""Locates the flattening function to use to flatten the given item."""
if isinstance(item, lf.Flow):
return self._flatten_linear
elif isinstance(item, uf.Flow):
return self._flatten_unordered
elif isinstance(item, gf.Flow):
return self._flatten_graph
elif isinstance(item, task.BaseTask):
return self._flatten_task
else:
return None
def _flatten_linear(self, flow):
"""Flattens a linear flow."""
graph = nx.DiGraph(name=flow.name)
previous_nodes = []
for item in flow:
subgraph = self._flatten(item)
graph = gu.merge_graphs([graph, subgraph])
# Find nodes that have no predecessor, make them have a predecessor
# of the previous nodes so that the linearity ordering is
# maintained. Find the ones with no successors and use this list
# to connect the next subgraph (if any).
self._add_new_edges(graph,
previous_nodes,
list(gu.get_no_predecessors(subgraph)))
# There should always be someone without successors, otherwise we
# have a cycle A -> B -> A situation, which should not be possible.
previous_nodes = list(gu.get_no_successors(subgraph))
return graph
def _flatten_unordered(self, flow):
"""Flattens a unordered flow."""
graph = nx.DiGraph(name=flow.name)
for item in flow:
# NOTE(harlowja): we do *not* connect the graphs together, this
# retains that each item (translated to subgraph) is disconnected
# from each other which will result in unordered execution while
# running.
graph = gu.merge_graphs([graph, self._flatten(item)])
return graph
def _flatten_task(self, task):
"""Flattens a individual task."""
graph = nx.DiGraph(name=task.name)
graph.add_node(task)
return graph
def _flatten_graph(self, flow):
"""Flattens a graph flow."""
graph = nx.DiGraph(name=flow.name)
# Flatten all nodes into a single subgraph per node.
subgraph_map = {}
for item in flow:
subgraph = self._flatten(item)
subgraph_map[item] = subgraph
graph = gu.merge_graphs([graph, subgraph])
# Reconnect all node edges to there corresponding subgraphs.
for (u, v) in flow.graph.edges_iter():
# Retain and update the original edge attributes.
u_v_attrs = gu.get_edge_attrs(flow.graph, u, v)
# Connect the ones with no predecessors in v to the ones with no
# successors in u (thus maintaining the edge dependency).
self._add_new_edges(graph,
list(gu.get_no_successors(subgraph_map[u])),
list(gu.get_no_predecessors(subgraph_map[v])),
edge_attrs=u_v_attrs)
return graph
def _pre_item_flatten(self, item):
"""Called before a item is flattened; any pre-flattening actions."""
if id(item) in self._history:
raise ValueError("Already flattened item: %s (%s), recursive"
" flattening not supported" % (item, id(item)))
LOG.debug("Starting to flatten '%s'", item)
self._history.add(id(item))
def _post_item_flatten(self, item, graph):
"""Called before a item is flattened; any post-flattening actions."""
LOG.debug("Finished flattening '%s'", item)
# NOTE(harlowja): this one can be expensive to calculate (especially
# the cycle detection), so only do it if we know debugging is enabled
# and not under all cases.
@@ -56,107 +165,36 @@ def _log_flatten(func):
for line in gu.pformat(graph).splitlines():
# Indent it so that it's slightly offset from the above line.
LOG.debug(" %s", line)
return graph
return wrapper
def _pre_flatten(self):
"""Called before the flattening of the item starts."""
self._history.clear()
def _post_flatten(self, graph):
"""Called after the flattening of the item finishes successfully."""
dup_names = misc.get_duplicate_keys(graph.nodes_iter(),
key=lambda node: node.name)
if dup_names:
dup_names = ', '.join(sorted(dup_names))
raise exceptions.InvariantViolation("Tasks with duplicate names "
"found: %s" % (dup_names))
self._history.clear()
def _flatten_linear(flow, flattened):
graph = nx.DiGraph(name=_graph_name(flow))
previous_nodes = []
for f in flow:
subgraph = _flatten(f, flattened)
graph = gu.merge_graphs([graph, subgraph])
# Find nodes that have no predecessor, make them have a predecessor of
# the previous nodes so that the linearity ordering is maintained. Find
# the ones with no successors and use this list to connect the next
# subgraph (if any).
for n in gu.get_no_predecessors(subgraph):
# NOTE(harlowja): give each edge its own copy so that if its later
# modified that the same copy isn't modified.
graph.add_edges_from(((n2, n, FLATTEN_EDGE_DATA.copy())
for n2 in previous_nodes
if not graph.has_edge(n2, n)))
# There should always be someone without successors, otherwise we have
# a cycle A -> B -> A situation, which should not be possible.
previous_nodes = list(gu.get_no_successors(subgraph))
return graph
def _flatten_unordered(flow, flattened):
graph = nx.DiGraph(name=_graph_name(flow))
for f in flow:
graph = gu.merge_graphs([graph, _flatten(f, flattened)])
return graph
def _flatten_task(task):
graph = nx.DiGraph(name='T:%s' % (task))
graph.add_node(task)
return graph
def _flatten_graph(flow, flattened):
graph = nx.DiGraph(name=_graph_name(flow))
subgraph_map = {}
# Flatten all nodes.
for n in flow.graph.nodes_iter():
subgraph = _flatten(n, flattened)
subgraph_map[n] = subgraph
graph = gu.merge_graphs([graph, subgraph])
# Reconnect all nodes to there corresponding subgraphs.
for (u, v) in flow.graph.edges_iter():
# Retain and update the original edge attributes.
u_v_attrs = gu.get_edge_attrs(flow.graph, u, v)
if not u_v_attrs:
u_v_attrs = FLATTEN_EDGE_DATA.copy()
@lu.locked
def flatten(self):
"""Flattens a item (a task or flow) into a single execution graph."""
if self._graph is not None:
return self._graph
self._pre_flatten()
graph = self._flatten(self._root)
self._post_flatten(graph)
if self._freeze:
self._graph = nx.freeze(graph)
else:
u_v_attrs.update(FLATTEN_EDGE_DATA)
u_no_succ = list(gu.get_no_successors(subgraph_map[u]))
# Connect the ones with no predecessors in v to the ones with no
# successors in u (thus maintaining the edge dependency).
for n in gu.get_no_predecessors(subgraph_map[v]):
# NOTE(harlowja): give each edge its own copy so that if its later
# modified that the same copy isn't modified.
graph.add_edges_from(((n2, n, copy.deepcopy(u_v_attrs))
for n2 in u_no_succ
if not graph.has_edge(n2, n)))
return graph
@_log_flatten
def _flatten(item, flattened):
"""Flattens a item (task/flow+subflows) into an execution graph."""
if item in flattened:
raise ValueError("Already flattened item: %s" % (item))
if isinstance(item, lf.Flow):
f = _flatten_linear(item, flattened)
elif isinstance(item, uf.Flow):
f = _flatten_unordered(item, flattened)
elif isinstance(item, gf.Flow):
f = _flatten_graph(item, flattened)
elif isinstance(item, task.BaseTask):
f = _flatten_task(item)
else:
raise TypeError("Unknown item: %r, %s" % (type(item), item))
flattened.add(item)
return f
def _post_flatten(graph):
dup_names = misc.get_duplicate_keys(graph.nodes_iter(),
key=lambda node: node.name)
if dup_names:
raise exceptions.InvariantViolation(
"Tasks with duplicate names found: %s"
% ', '.join(sorted(dup_names)))
return graph
self._graph = graph
return self._graph
def flatten(item, freeze=True):
"""Flattens a item (a task or flow) into a single execution graph."""
graph = _post_flatten(_flatten(item, set()))
if freeze:
# Frozen graph can't be modified...
return nx.freeze(graph)
return graph
return Flattener(item, freeze=freeze).flatten()