neutron/doc/source/admin/config-ovs-offload.rst

446 lines
14 KiB
ReStructuredText

.. _config-ovs-offload:
================================
Open vSwitch Hardware Offloading
================================
The purpose of this page is to describe how to enable Open vSwitch hardware
offloading functionality available in OpenStack (using OpenStack Networking).
This functionality was first introduced in the OpenStack Pike release.
This page intends to serve as a guide for how to configure OpenStack Networking
and OpenStack Compute to enable Open vSwitch hardware offloading.
The basics
~~~~~~~~~~
Open vSwitch is a production quality, multilayer virtual switch licensed under
the open source Apache 2.0 license. It is designed to enable massive network
automation through programmatic extension, while still supporting standard
management interfaces and protocols. Open vSwitch (OVS) allows Virtual Machines
(VM) to communicate with each other and with the outside world.
The OVS software based solution is CPU intensive, affecting system performance
and preventing fully utilizing available bandwidth.
.. list-table::
:header-rows: 1
:widths: 30 90
* - Term
- Definition
* - PF
- Physical Function. The physical Ethernet controller that supports
SR-IOV.
* - VF
- Virtual Function. The virtual PCIe device created from a physical
Ethernet controller.
* - Representor Port
- Virtual network interface similar to SR-IOV port that represents
Nova instance.
* - First Compute Node
- OpenStack Compute Node that can host Compute instances (Virtual Machines).
* - Second Compute Node
- OpenStack Compute Node that can host Compute instances (Virtual Machines).
Supported Ethernet controllers
------------------------------
The following manufacturers are known to work:
- Mellanox ConnectX-4 NIC (VLAN Offload)
- Mellanox ConnectX-4 Lx/ConnectX-5 NICs (VLAN/VXLAN Offload)
- Broadcom NetXtreme-S series NICs
- Broadcom NetXtreme-E series NICs
For information on **Mellanox Ethernet Cards**, see
`Mellanox: Ethernet Cards - Overview
<http://www.mellanox.com/page/ethernet_cards_overview>`_.
Prerequisites
-------------
- Linux Kernel >= 4.13
- Open vSwitch >= 2.8
- iproute >= 4.12
- Mellanox or Broadcom NIC
.. note:: Mellanox NIC FW that supports Open vSwitch hardware offloading:
ConnectX-5 >= 16.21.0338
ConnectX-4 >= 12.18.2000
ConnectX-4 Lx >= 14.21.0338
Using Open vSwitch hardware offloading
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In order to enable Open vSwitch hardware offloading, the following steps are required:
#. Enable SR-IOV
#. Configure NIC to switchdev mode (relevant Nodes)
#. Enable Open vSwitch hardware offloading
.. note::
Throughout this guide, ``enp3s0f0`` is used as the PF and ``eth3`` is used
as the representor port. These ports may vary in different environments.
.. note::
Throughout this guide, we use ``systemctl`` to restart OpenStack services.
This is correct for ``systemd`` OS. Other methods to restart services should be
used in other environments.
Create Compute virtual functions
----------------------------------
Create the VFs for the network interface that will be used for SR-IOV. We use
``enp3s0f0`` as PF, which is also used as the interface for the VLAN provider
network and has access to the private networks of all nodes.
.. note::
The following steps detail how to create VFs using Mellanox ConnectX-4 and
SR-IOV Ethernet cards on an Intel system. Steps may be different for the
hardware of your choice.
#. Ensure SR-IOV and VT-d are enabled on the system.
Enable IOMMU in Linux by adding ``intel_iommu=on`` to kernel parameters,
for example, using GRUB.
#. On each Compute node, create the VFs:
.. code-block:: bash
# echo '4' > /sys/class/net/enp3s0f0/device/sriov_numvfs
.. note::
A network interface can be used both for PCI passthrough, using the PF,
and SR-IOV, using the VFs. If the PF is used, the VF number stored in
the ``sriov_numvfs`` file is lost. If the PF is attached again to the
operating system, the number of VFs assigned to this interface will be
zero. To keep the number of VFs always assigned to this interface,
update a relevant file according to your OS.
See some examples below:
In Ubuntu, modifying the ``/etc/network/interfaces`` file:
.. code-block:: ini
auto enp3s0f0
iface enp3s0f0 inet dhcp
pre-up echo '4' > /sys/class/net/enp3s0f0/device/sriov_numvfs
In Red Hat, modifying the ``/sbin/ifup-local`` file:
.. code-block:: bash
#!/bin/sh
if [[ "$1" == "enp3s0f0" ]]
then
echo '4' > /sys/class/net/enp3s0f0/device/sriov_numvfs
fi
.. warning::
Alternatively, you can create VFs by passing the ``max_vfs`` to the
kernel module of your network interface. However, the ``max_vfs``
parameter has been deprecated, so the PCI /sys interface is the preferred
method.
You can determine the maximum number of VFs a PF can support:
.. code-block:: bash
# cat /sys/class/net/enp3s0f0/device/sriov_totalvfs
8
#. Verify that the VFs have been created and are in ``up`` state:
.. note::
The PCI bus number of the PF (03:00.0) and VFs (03:00.2 .. 03:00.5)
will be used later.
.. code-block:: bash
# lspci | grep Ethernet
03:00.0 Ethernet controller: Mellanox Technologies MT27800 Family [ConnectX-5]
03:00.1 Ethernet controller: Mellanox Technologies MT27800 Family [ConnectX-5]
03:00.2 Ethernet controller: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function]
03:00.3 Ethernet controller: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function]
03:00.4 Ethernet controller: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function]
03:00.5 Ethernet controller: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function]
.. code-block:: bash
# ip link show enp3s0f0
8: enp3s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT qlen 1000
link/ether a0:36:9f:8f:3f:b8 brd ff:ff:ff:ff:ff:ff
vf 0 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 1 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 2 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 3 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
If the interfaces are down, set them to ``up`` before launching a guest,
otherwise the instance will fail to spawn:
.. code-block:: bash
# ip link set enp3s0f0 up
Configure Open vSwitch hardware offloading
------------------------------------------
#. Change the e-switch mode from legacy to switchdev on the PF device.
This will also create the VF representor network devices in the host OS.
.. code-block:: bash
# echo 0000:03:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
This tells the driver to unbind VF 03:00.2
.. note::
This should be done for all relevant VFs
(in this example 0000:03:00.2 .. 0000:03:00.5)
#. Enable Open vSwitch hardware offloading,
set PF to switchdev mode and bind VFs back.
.. code-block:: bash
# sudo devlink dev eswitch set pci/0000:03:00.0 mode switchdev
# sudo ethtool -K enp3s0f0 hw-tc-offload on
# echo 0000:03:00.2 > /sys/bus/pci/drivers/mlx5_core/bind
.. note::
This should be done for all relevant VFs
(in this example 0000:03:00.2 .. 0000:03:00.5)
#. Restart Open vSwitch
.. code-block:: bash
# sudo systemctl enable openvswitch.service
# sudo ovs-vsctl set Open_vSwitch . other_config:hw-offload=true
# sudo systemctl restart openvswitch.service
.. note::
The given aging of OVS is given in milliseconds and can be controlled with:
.. code-block:: bash
# ovs-vsctl set Open_vSwitch . other_config:max-idle=30000
Configure Nodes (VLAN Configuration)
-------------------------------------
#. Update ``/etc/neutron/plugins/ml2/ml2_conf.ini`` on Controller nodes
.. code-block:: ini
[ml2]
tenant_network_types = vlan
type_drivers = vlan
mechanism_drivers = openvswitch
.. end
#. Update ``/etc/neutron/neutron.conf`` on Controller nodes
.. code-block:: ini
[DEFAULT]
core_plugin = ml2
.. end
#. Update ``/etc/nova/nova.conf`` on Controller nodes
.. code-block:: ini
[filter_scheduler]
enabled_filters = PciPassthroughFilter
.. end
#. Update ``/etc/nova/nova.conf`` on Compute nodes
.. code-block:: ini
[pci]
#VLAN Configuration passthrough_whitelist example
passthrough_whitelist ={"'"address"'":"'"*:'"03:00"'.*"'","'"physical_network"'":"'"physnet2"'"}
.. end
Configure Nodes (VXLAN Configuration)
-------------------------------------
#. Update ``/etc/neutron/plugins/ml2/ml2_conf.ini`` on Controller nodes
.. code-block:: ini
[ml2]
tenant_network_types = vxlan
type_drivers = vxlan
mechanism_drivers = openvswitch
.. end
#. Update ``/etc/neutron/neutron.conf`` on Controller nodes
.. code-block:: ini
[DEFAULT]
core_plugin = ml2
.. end
#. Update ``/etc/nova/nova.conf`` on Controller nodes
.. code-block:: ini
[filter_scheduler]
enabled_filters = PciPassthroughFilter
.. end
#. Update ``/etc/nova/nova.conf`` on Compute nodes
.. note::
VXLAN configuration requires physical_network to be null.
.. code-block:: ini
[pci]
#VLAN Configuration passthrough_whitelist example
passthrough_whitelist ={"'"address"'":"'"*:'"03:00"'.*"'","'"physical_network"'":null}
.. end
#. Restart nova and neutron services
.. code-block:: bash
# sudo systemctl restart openstack-nova-compute.service
# sudo systemctl restart openstack-nova-scheduler.service
# sudo systemctl restart neutron-server.service
Validate Open vSwitch hardware offloading
-----------------------------------------
.. note::
In this example we will bring up two instances on different Compute nodes and
send ICMP echo packets between them. Then we will check TCP packets on
a representor port and we will see that only the first packet will be
shown there. All the rest will be offloaded.
#. Create a port ``direct`` on ``private`` network
.. code-block:: bash
# openstack port create --network private --vnic-type=direct direct_port1
#. Create an instance using the direct port on 'First Compute Node'
.. code-block:: bash
# openstack server create --flavor m1.small --image cloud_image --nic port-id=direct_port1 vm1
#. Repeat steps above and create a second instance on 'Second Compute Node'
.. code-block:: bash
# openstack port create --network private --vnic-type=direct direct_port2
# openstack server create --flavor m1.small --image mellanox_fedora --nic port-id=direct_port2 vm2
.. note::
You can use --availability-zone nova:compute_node_1 option
to set the desired Compute Node
#. Connect to instance1 and send ICMP Echo Request packets to instance2
.. code-block:: bash
# vncviewer localhost:5900
vm_1# ping vm2
#. Connect to 'Second Compute Node' and find representor port of the instance
.. note::
Find a representor port first, in our case it's eth3
.. code-block:: console
compute_node2# ip link show enp3s0f0
6: enp3s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master ovs-system state UP mode DEFAULT group default qlen 1000
link/ether ec:0d:9a:46:9e:84 brd ff:ff:ff:ff:ff:ff
vf 0 MAC 00:00:00:00:00:00, spoof checking off, link-state enable, trust off, query_rss off
vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-state enable, trust off, query_rss off
vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-state enable, trust off, query_rss off
vf 3 MAC fa:16:3e:b9:b8:ce, vlan 57, spoof checking on, link-state enable, trust off, query_rss off
compute_node2# ls -l /sys/class/net/
lrwxrwxrwx 1 root root 0 Sep 11 10:54 eth0 -> ../../devices/virtual/net/eth0
lrwxrwxrwx 1 root root 0 Sep 11 10:54 eth1 -> ../../devices/virtual/net/eth1
lrwxrwxrwx 1 root root 0 Sep 11 10:54 eth2 -> ../../devices/virtual/net/eth2
lrwxrwxrwx 1 root root 0 Sep 11 10:54 eth3 -> ../../devices/virtual/net/eth3
compute_node2# sudo ovs-dpctl show
system@ovs-system:
lookups: hit:1684 missed:1465 lost:0
flows: 0
masks: hit:8420 total:1 hit/pkt:2.67
port 0: ovs-system (internal)
port 1: br-enp3s0f0 (internal)
port 2: br-int (internal)
port 3: br-ex (internal)
port 4: enp3s0f0
port 5: tapfdc744bb-61 (internal)
port 6: qr-a7b1e843-4f (internal)
port 7: qg-79a77e6d-8f (internal)
port 8: qr-f55e4c5f-f3 (internal)
port 9: eth3
.. end
#. Check traffic on the representor port. Verify that only the first ICMP packet appears.
.. code-block:: console
compute_node2# tcpdump -nnn -i eth3
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth3, link-type EN10MB (Ethernet), capture size 262144 bytes
17:12:41.220447 ARP, Request who-has 172.0.0.10 tell 172.0.0.13, length 46
17:12:41.220684 ARP, Reply 172.0.0.10 is-at fa:16:3e:f2:8b:23, length 42
17:12:41.260487 IP 172.0.0.13 > 172.0.0.10: ICMP echo request, id 1263, seq 1, length 64
17:12:41.260778 IP 172.0.0.10 > 172.0.0.13: ICMP echo reply, id 1263, seq 1, length 64
17:12:46.268951 ARP, Request who-has 172.0.0.13 tell 172.0.0.10, length 42
17:12:46.271771 ARP, Reply 172.0.0.13 is-at fa:16:3e:1a:10:05, length 46
17:12:55.354737 IP6 fe80::f816:3eff:fe29:8118 > ff02::1: ICMP6, router advertisement, length 64
17:12:56.106705 IP 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCP, Request from 62:21:f0:89:40:73, length 300
.. end