A recent'ish change in openstack-manuals [1] noted the new support for NUMA topologies when using the Hyper-V driver. As part of this change, a section was added that describes the configuration steps that were necessary on Hyper-V hosts before booting instances. However, the way this section is integrated gives the impression that NUMA support is a Hyper-V only feature. Correct this by moving this configuration step to the end of the document and instead opting to link to it from higher in the doc. [1] https://review.openstack.org/#/c/424102/ Change-Id: Ic8d9c1b35d52a26374763b5c0e4be79875814569 Signed-off-by: Stephen Finucane <sfinucan@redhat.com>
17 KiB
CPU topologies
The NUMA topology and CPU pinning features in OpenStack provide high-level control over how instances run on hypervisor CPUs and the topology of virtual CPUs available to instances. These features help minimize latency and maximize performance.
SMP, NUMA, and SMT
- Symmetric multiprocessing (SMP)
-
SMP is a design found in many modern multi-core systems. In an SMP system, there are two or more CPUs and these CPUs are connected by some interconnect. This provides CPUs with equal access to system resources like memory and input/output ports.
- Non-uniform memory access (NUMA)
-
NUMA is a derivative of the SMP design that is found in many multi-socket systems. In a NUMA system, system memory is divided into cells or nodes that are associated with particular CPUs. Requests for memory on other nodes are possible through an interconnect bus. However, bandwidth across this shared bus is limited. As a result, competition for this resource can incur performance penalties.
- Simultaneous Multi-Threading (SMT)
-
SMT is a design complementary to SMP. Whereas CPUs in SMP systems share a bus and some memory, CPUs in SMT systems share many more components. CPUs that share components are known as thread siblings. All CPUs appear as usable CPUs on the system and can execute workloads in parallel. However, as with NUMA, threads compete for shared resources.
In OpenStack, SMP CPUs are known as cores, NUMA cells or nodes are known as sockets, and SMT CPUs are known as threads. For example, a quad-socket, eight core system with Hyper-Threading would have four sockets, eight cores per socket and two threads per core, for a total of 64 CPUs.
Customizing instance NUMA placement policies
Important
The functionality described below is currently only supported by the
libvirt/KVM and Hyper-V driver. The Hyper-V driver may require some
host configuration <configure-hyperv-numa>
for this to
work.
When running workloads on NUMA hosts, it is important that the vCPUs executing processes are on the same NUMA node as the memory used by these processes. This ensures all memory accesses are local to the node and thus do not consume the limited cross-node memory bandwidth, adding latency to memory accesses. Similarly, large pages are assigned from memory and benefit from the same performance improvements as memory allocated using standard pages. Thus, they also should be local. Finally, PCI devices are directly associated with specific NUMA nodes for the purposes of DMA. Instances that use PCI or SR-IOV devices should be placed on the NUMA node associated with these devices.
NUMA topology can exist on both the physical hardware of the host and the virtual hardware of the instance. In OpenStack, when booting a process, the hypervisor driver looks at the NUMA topology field of both the instance and the host it is being booted on, and uses that information to generate an appropriate configuration.
By default, an instance floats across all NUMA nodes on a host. NUMA awareness can be enabled implicitly through the use of huge pages or pinned CPUs or explicitly through the use of flavor extra specs or image metadata. If the instance has requested a specific NUMA topology, compute will try to pin the vCPUs of different NUMA cells on the instance to the corresponding NUMA cells on the host. It will also expose the NUMA topology of the instance to the guest OS.
If you want compute to pin a particular vCPU as part of this process,
set the vcpu_pin_set
parameter in the
nova.conf
configuration file. For more information about
the vcpu_pin_set
parameter, see the /configuration/config
.
In all cases where NUMA awareness is used, the
NUMATopologyFilter
filter must be enabled. Details on this
filter are provided in /admin/configuration/schedulers
.
Caution
The NUMA node(s) used are normally chosen at random. However, if a PCI passthrough or SR-IOV device is attached to the instance, then the NUMA node that the device is associated with will be used. This can provide important performance improvements. However, booting a large number of similar instances can result in unbalanced NUMA node usage. Care should be taken to mitigate this issue. See this discussion for more details.
Caution
Inadequate per-node resources will result in scheduling failures. Resources that are specific to a node include not only CPUs and memory, but also PCI and SR-IOV resources. It is not possible to use multiple resources from different nodes without requesting a multi-node layout. As such, it may be necessary to ensure PCI or SR-IOV resources are associated with the same NUMA node or force a multi-node layout.
When used, NUMA awareness allows the operating system of the instance to intelligently schedule the workloads that it runs and minimize cross-node memory bandwidth. To restrict an instance's vCPUs to a single host NUMA node, run:
$ openstack flavor set m1.large --property hw:numa_nodes=1
Some workloads have very demanding requirements for memory access latency or bandwidth that exceed the memory bandwidth available from a single NUMA node. For such workloads, it is beneficial to spread the instance across multiple host NUMA nodes, even if the instance's RAM/vCPUs could theoretically fit on a single NUMA node. To force an instance's vCPUs to spread across two host NUMA nodes, run:
$ openstack flavor set m1.large --property hw:numa_nodes=2
The allocation of instances vCPUs and memory from different host NUMA nodes can be configured. This allows for asymmetric allocation of vCPUs and memory, which can be important for some workloads. To spread the 6 vCPUs and 6 GB of memory of an instance across two NUMA nodes and create an asymmetric 1:2 vCPU and memory mapping between the two nodes, run:
$ openstack flavor set m1.large --property hw:numa_nodes=2
$ openstack flavor set m1.large \ # configure guest node 0
--property hw:numa_cpus.0=0,1 \
--property hw:numa_mem.0=2048
$ openstack flavor set m1.large \ # configure guest node 1
--property hw:numa_cpus.1=2,3,4,5 \
--property hw:numa_mem.1=4096
Note
Hyper-V does not support asymmetric NUMA topologies, and the Hyper-V driver will not spawn instances with such topologies.
For more information about the syntax for hw:numa_nodes
,
hw:numa_cpus.N
and hw:num_mem.N
, refer to the
NUMA
topology <extra-specs-numa-topology>
guide.
Customizing instance CPU pinning policies
Important
The functionality described below is currently only supported by the libvirt/KVM driver. Hyper-V does not support CPU pinning.
By default, instance vCPU processes are not assigned to any particular host CPU, instead, they float across host CPUs like any other process. This allows for features like overcommitting of CPUs. In heavily contended systems, this provides optimal system performance at the expense of performance and latency for individual instances.
Some workloads require real-time or near real-time behavior, which is not possible with the latency introduced by the default CPU policy. For such workloads, it is beneficial to control which host CPUs are bound to an instance's vCPUs. This process is known as pinning. No instance with pinned CPUs can use the CPUs of another pinned instance, thus preventing resource contention between instances. To configure a flavor to use pinned vCPUs, a use a dedicated CPU policy. To force this, run:
$ openstack flavor set m1.large --property hw:cpu_policy=dedicated
Caution
Host aggregates should be used to separate pinned instances from unpinned instances as the latter will not respect the resourcing requirements of the former.
When running workloads on SMT hosts, it is important to be aware of the impact that thread siblings can have. Thread siblings share a number of components and contention on these components can impact performance. To configure how to use threads, a CPU thread policy should be specified. For workloads where sharing benefits performance, use thread siblings. To force this, run:
$ openstack flavor set m1.large \
--property hw:cpu_policy=dedicated \
--property hw:cpu_thread_policy=require
For other workloads where performance is impacted by contention for resources, use non-thread siblings or non-SMT hosts. To force this, run:
$ openstack flavor set m1.large \
--property hw:cpu_policy=dedicated \
--property hw:cpu_thread_policy=isolate
Finally, for workloads where performance is minimally impacted, use thread siblings if available. This is the default, but it can be set explicitly:
$ openstack flavor set m1.large \
--property hw:cpu_policy=dedicated \
--property hw:cpu_thread_policy=prefer
For more information about the syntax for hw:cpu_policy
and hw:cpu_thread_policy
, refer to the /admin/flavors
guide.
Applications are frequently packaged as images. For applications that require real-time or near real-time behavior, configure image metadata to ensure created instances are always pinned regardless of flavor. To configure an image to use pinned vCPUs and avoid thread siblings, run:
$ openstack image set [IMAGE_ID] \
--property hw_cpu_policy=dedicated \
--property hw_cpu_thread_policy=isolate
If the flavor specifies a CPU policy of dedicated
then
that policy will be used. If the flavor explicitly specifies a CPU
policy of shared
and the image specifies no policy or a
policy of shared
then the shared
policy will
be used, but if the image specifies a policy of dedicated
an exception will be raised. By setting a shared
policy
through flavor extra-specs, administrators can prevent users configuring
CPU policies in images and impacting resource utilization. To configure
this policy, run:
$ openstack flavor set m1.large --property hw:cpu_policy=shared
If the flavor does not specify a CPU thread policy then the CPU thread policy specified by the image (if any) will be used. If both the flavor and image specify a CPU thread policy then they must specify the same policy, otherwise an exception will be raised.
Note
There is no correlation required between the NUMA topology exposed in the instance and how the instance is actually pinned on the host. This is by design. See this invalid bug for more information.
For more information about image metadata, refer to the Image metadata guide.
Customizing instance CPU topologies
Important
The functionality described below is currently only supported by the libvirt/KVM driver.
Note
Currently it also works with libvirt/QEMU driver but we don't recommend it in production use cases. This is because vCPUs are actually running in one thread on host in qemu TCG (Tiny Code Generator), which is the backend for libvirt/QEMU driver. Work to enable full multi-threading support for TCG (a.k.a. MTTCG) is on going in QEMU community. Please see this MTTCG project page for detail.
In addition to configuring how an instance is scheduled on host CPUs, it is possible to configure how CPUs are represented in the instance itself. By default, when instance NUMA placement is not specified, a topology of N sockets, each with one core and one thread, is used for an instance, where N corresponds to the number of instance vCPUs requested. When instance NUMA placement is specified, the number of sockets is fixed to the number of host NUMA nodes to use and the total number of instance CPUs is split over these sockets.
Some workloads benefit from a custom topology. For example, in some operating systems, a different license may be needed depending on the number of CPU sockets. To configure a flavor to use a maximum of two sockets, run:
$ openstack flavor set m1.large --property hw:cpu_sockets=2
Similarly, to configure a flavor to use one core and one thread, run:
$ openstack flavor set m1.large \
--property hw:cpu_cores=1 \
--property hw:cpu_threads=1
Caution
If specifying all values, the product of sockets multiplied by cores
multiplied by threads must equal the number of instance vCPUs. If
specifying any one of these values or the multiple of two values, the
values must be a factor of the number of instance vCPUs to prevent an
exception. For example, specifying hw:cpu_sockets=2
on a
host with an odd number of cores fails. Similarly, specifying
hw:cpu_cores=2
and hw:cpu_threads=4
on a host
with ten cores fails.
For more information about the syntax for
hw:cpu_sockets
, hw:cpu_cores
and
hw:cpu_threads
, refer to the /admin/flavors
guide.
It is also possible to set upper limits on the number of sockets, cores, and threads used. Unlike the hard values above, it is not necessary for this exact number to used because it only provides a limit. This can be used to provide some flexibility in scheduling, while ensuring certain limits are not exceeded. For example, to ensure no more than two sockets are defined in the instance topology, run:
$ openstack flavor set m1.large --property hw:cpu_max_sockets=2
For more information about the syntax for
hw:cpu_max_sockets
, hw:cpu_max_cores
, and
hw:cpu_max_threads
, refer to the /admin/flavors
guide.
Applications are frequently packaged as images. For applications that prefer certain CPU topologies, configure image metadata to hint that created instances should have a given topology regardless of flavor. To configure an image to request a two-socket, four-core per socket topology, run:
$ openstack image set [IMAGE_ID] \
--property hw_cpu_sockets=2 \
--property hw_cpu_cores=4
To constrain instances to a given limit of sockets, cores or threads,
use the max_
variants. To configure an image to have a
maximum of two sockets and a maximum of one thread, run:
$ openstack image set [IMAGE_ID] \
--property hw_cpu_max_sockets=2 \
--property hw_cpu_max_threads=1
The value specified in the flavor is treated as the absolute limit.
The image limits are not permitted to exceed the flavor limits, they can
only be equal to or lower than what the flavor defines. By setting a
max
value for sockets, cores, or threads, administrators
can prevent users configuring topologies that might, for example, incur
an additional licensing fees.
For more information about image metadata, refer to the Image metadata guide.
Configuring Hyper-V compute nodes for instance NUMA policies
Hyper-V is configured by default to allow instances to span multiple NUMA nodes, regardless if the instances have been configured to only span N NUMA nodes. This behaviour allows Hyper-V instances to have up to 64 vCPUs and 1 TB of memory.
Checking NUMA spanning can easily be done by running this following PowerShell command:
(Get-VMHost).NumaSpanningEnabled
In order to disable this behaviour, the host will have to be configured to disable NUMA spanning. This can be done by executing these following PowerShell commands:
Set-VMHost -NumaSpanningEnabled $false
Restart-Service vmms
In order to restore this behaviour, execute these PowerShell commands:
Set-VMHost -NumaSpanningEnabled $true
Restart-Service vmms
The Virtual Machine Management Service (vmms) is
responsible for managing the Hyper-V VMs. The VMs will still run while
the service is down or restarting, but they will not be manageable by
the nova-compute
service. In order for the effects of the
host NUMA spanning configuration to take effect, the VMs will have to be
restarted.
Hyper-V does not allow instances with a NUMA topology to have dynamic
memory allocation turned on. The Hyper-V driver will ignore the
configured dynamic_memory_ratio
from the given
nova.conf
file when spawning instances with a NUMA
topology.