404 error code is always one of the return code when url or resource does not exist, so 404 is an available status code for all the Nova API. Then no microversion bump required for fixing 500 to 404 . Change-Id: I4b1703e82cd89192b2ba4ce2603741e33dd26586
13 KiB
API Microversions
Background
Nova uses a framework we call 'API Microversions' for allowing
changes to the API while preserving backward compatibility. The basic
idea is that a user has to explicitly ask for their request to be
treated with a particular version of the API. So breaking changes can be
added to the API without breaking users who don't specifically ask for
it. This is done with an HTTP header
X-OpenStack-Nova-API-Version
which is a monotonically
increasing semantic version number starting from 2.1
.
If a user makes a request without specifying a version, they will get
the DEFAULT_API_VERSION
as defined in
nova/api/openstack/wsgi.py
. This value is currently
2.1
and is expected to remain so for quite a long time.
There is a special value latest
which can be specified,
which will allow a client to always receive the most recent version of
API responses from the server.
Warning
The latest
value is mostly meant for integration testing
and would be dangerous to rely on in client code since Nova
microversions are not following semver and therefore backward
compability is not guaranteed. Clients, like python-novaclient, should
always require a specific microversion but limit what is acceptable to
the version range that it understands at the time.
For full details please read the Kilo spec for microversions
When do I need a new Microversion?
A microversion is needed when the contract to the user is changed. The user contract covers many kinds of information such as:
- the Request
the list of resource urls which exist on the server
Example: adding a new servers/{ID}/foo which didn't exist in a previous version of the code
the list of query parameters that are valid on urls
Example: adding a new parameter
is_yellow
servers/{ID}?is_yellow=Truethe list of query parameter values for non free form fields
Example: parameter filter_by takes a small set of constants/enums "A", "B", "C". Adding support for new enum "D".
new headers accepted on a request
the list of attributes and data structures accepted.
Example: adding a new attribute 'locked': True/False to the request body
However, the attribute
os.scheduler_hints
of the "create a server" API is an exception to this. A new scheduler which adds a new attribute toos:scheduler_hints
doesn't require a new microversion, because available schedulers depend on cloud environments, and we accept customized schedulers as a rule.
- the Response
the list of attributes and data structures returned
Example: adding a new attribute 'locked': True/False to the output of servers/{ID}
the allowed values of non free form fields
Example: adding a new allowed
status
to servers/{ID}the list of status codes allowed for a particular request
Example: an API previously could return 200, 400, 403, 404 and the change would make the API now also be allowed to return 409.
See1 for the 400, 403 and 404 cases.
changing a status code on a particular response
Example: changing the return code of an API from 501 to 400.
Note
Fixing a bug so that a 400+ code is returned rather than a 500 does not require a microversion change. It's assumed that clients are not expected to handle a 500 response and therefore should not need to opt-in to microversion changes that fixes a 500 response from happening. According to the OpenStack API Working Group, a 500 Internal Server Error should not be returned to the user for failures due to user error that can be fixed by changing the request on the client side. See2.
new headers returned on a response
The following flow chart attempts to walk through the process of "do we need a microversion".
digraph states {
label="Do I need a microversion?"
silent_fail[shape="diamond", style="", group=g1, label="Did we silently
- fail to do what is asked?"];
-
ret_500[shape="diamond", style="", group=g1, label="Did we return a 500
- before?"];
-
new_error[shape="diamond", style="", group=g1, label="Are we changing what status code is returned?"]; new_attr[shape="diamond", style="", group=g1, label="Did we add or remove an attribute to a payload?"]; new_param[shape="diamond", style="", group=g1, label="Did we add or remove an accepted query string parameter or value?"]; new_resource[shape="diamond", style="", group=g1, label="Did we add or remove a
resource url?"];
no[shape="box", style=rounded, label="No microversion needed"]; yes[shape="box", style=rounded, label="Yes, you need a microversion"]; no2[shape="box", style=rounded, label="No microversion needed, it's a bug"];
silent_fail -> ret_500[label=" no"]; silent_fail -> no2[label="yes"];
ret_500 -> no2[label="yes [1]"]; ret_500 -> new_error[label=" no"];
new_error -> new_attr[label=" no"]; new_error -> yes[label="yes"];
new_attr -> new_param[label=" no"]; new_attr -> yes[label="yes"];
new_param -> new_resource[label=" no"]; new_param -> yes[label="yes"];
new_resource -> no[label=" no"]; new_resource -> yes[label="yes"];
{rank=same; yes new_attr} {rank=same; no2 ret_500} {rank=min; silent_fail} }
Footnotes
In Code
In nova/api/openstack/wsgi.py
we define an
@api_version
decorator which is intended to be used on
top-level Controller methods. It is not appropriate for lower-level
methods. Some examples:
Adding a new API method
In the controller class:
@wsgi.Controller.api_version("2.4")
def my_api_method(self, req, id):
....
This method would only be available if the caller had specified an
X-OpenStack-Nova-API-Version
of >= 2.4
. If
they had specified a lower version (or not specified it and received the
default of 2.1
) the server would respond with
HTTP/404
.
Removing an API method
In the controller class:
@wsgi.Controller.api_version("2.1", "2.4")
def my_api_method(self, req, id):
....
This method would only be available if the caller had specified an
X-OpenStack-Nova-API-Version
of <= 2.4
. If
2.5
or later is specified the server will respond with
HTTP/404
.
Changing a method's behavior
In the controller class:
@wsgi.Controller.api_version("2.1", "2.3")
def my_api_method(self, req, id):
.... method_1 ...
@wsgi.Controller.api_version("2.4") # noqa
def my_api_method(self, req, id):
.... method_2 ...
If a caller specified 2.1
, 2.2
or
2.3
(or received the default of 2.1
) they
would see the result from method_1
, 2.4
or
later method_2
.
It is vital that the two methods have the same name, so the second of
them will need # noqa
to avoid failing flake8's
F811
rule. The two methods may be different in any kind of
semantics (schema validation, return values, response codes, etc)
A method with only small changes between versions
A method may have only small changes between microversions, in which case you can decorate a private method:
@api_version("2.1", "2.4")
def _version_specific_func(self, req, arg1):
pass
@api_version(min_version="2.5") # noqa
def _version_specific_func(self, req, arg1):
pass
def show(self, req, id):
.... common stuff ....
self._version_specific_func(req, "foo")
.... common stuff ....
A change in schema only
If there is no change to the method, only to the schema that is used
for validation, you can add a version range to the
validation.schema
decorator:
@wsgi.Controller.api_version("2.1")
@validation.schema(dummy_schema.dummy, "2.3", "2.8")
@validation.schema(dummy_schema.dummy2, "2.9")
def update(self, req, id, body):
....
This method will be available from version 2.1
,
validated according to dummy_schema.dummy
from
2.3
to 2.8
, and validated according to
dummy_schema.dummy2
from 2.9
onward.
When not using decorators
When you don't want to use the @api_version
decorator on
a method or you want to change behavior within a method (say it leads to
simpler or simply a lot less code) you can directly test for the
requested version with a method as long as you have access to the api
request object (commonly called req
). Every API method has
an api_version_request object attached to the req object and that can be
used to modify behavior based on its value:
def index(self, req):
<common code>
req_version = req.api_version_request
if req_version.matches("2.1", "2.5"):
....stuff....
elif req_version.matches("2.6", "2.10"):
....other stuff....
elif req_version > api_version_request.APIVersionRequest("2.10"):
....more stuff.....
<common code>
The first argument to the matches method is the minimum acceptable version and the second is maximum acceptable version. A specified version can be null:
null_version = APIVersionRequest()
If the minimum version specified is null then there is no restriction on the minimum version, and likewise if the maximum version is null there is no restriction the maximum version. Alternatively a one sided comparison can be used as in the example above.
Other necessary changes
If you are adding a patch which adds a new microversion, it is necessary to add changes to other places which describe your change:
- Update
REST_API_VERSION_HISTORY
innova/api/openstack/api_version_request.py
- Update
_MAX_API_VERSION
innova/api/openstack/api_version_request.py
- Add a verbose description to
nova/api/openstack/rest_api_version_history.rst
. There should be enough information that it could be used by the docs team for release notes. - Update the expected versions in affected tests, for example in
nova/tests/unit/api/openstack/compute/test_versions.py
. - Update the get versions api sample files:
doc/api_samples/versions/versions-get-resp.json
andnova/tests/functional/api_samples/versions/versions-get-resp.json.tpl
.
Allocating a microversion
If you are adding a patch which adds a new microversion, it is
necessary to allocate the next microversion number. Except under
extremely unusual circumstances and this would have been mentioned in
the nova spec for the change, the minor number of
_MAX_API_VERSION
will be incremented. This will also be the
new microversion number for the API change.
It is possible that multiple microversion patches would be proposed
in parallel and the microversions would conflict between patches. This
will cause a merge conflict. We don't reserve a microversion for each
patch in advance as we don't know the final merge order. Developers may
need over time to rebase their patch calculating a new version number as
above based on the updated value of _MAX_API_VERSION
.
Testing Microversioned API Methods
Testing a microversioned API method is very similar to a normal
controller method test, you just need to add the
X-OpenStack-Nova-API-Version
header, for example:
req = fakes.HTTPRequest.blank('/testable/url/endpoint')
req.headers = {'X-OpenStack-Nova-API-Version': '2.2'}
req.api_version_request = api_version.APIVersionRequest('2.6')
controller = controller.TestableController()
res = controller.index(req)
... assertions about the response ...
For many examples of testing, the canonical examples are in
nova/tests/unit/api/openstack/compute/test_microversions.py
.
The exception to not needing a microversion when returning a previously unspecified error code is the 400, 403 and 404 cases. This is considered OK to return even if previously unspecified in the code since it's implied given keystone authentication can fail with a 403 and API validation can fail with a 400 for invalid json request body. Request to url/resource that does not exist always fails with 404.↩︎
When fixing 500 errors that previously caused stack traces, try to map the new error into the existing set of errors that API call could previously return (400 if nothing else is appropriate). Changing the set of allowed status codes from a request is changing the contract, and should be part of a microversion (except in).
The reason why we are so strict on contract is that we'd like application writers to be able to know, for sure, what the contract is at every microversion in Nova. If they do not, they will need to write conditional code in their application to handle ambiguities.
When in doubt, consider application authors. If it would work with no client side changes on both Nova versions, you probably don't need a microversion. If, on the other hand, there is any ambiguity, a microversion is probably needed.↩︎