568921ce5b
We are running functional tests in zuul without a 'pyNN' factor (e.g. 'tox -e functional'). For this to work, we need to allow an empty factor, i.e. we want: [testenv:functional{,-py310}] rather than: [testenv:functional{-py310}] (note the missing comma) Unfortunately we missed this as tox 4 has a currently unaddressed regression [1] that results in it running the base testenv in the case there is only a partial factor match. That needs to be fixed for avoid this biting us again the future, but we can at least fix it for now. [1] https://github.com/tox-dev/tox/issues/3219 Change-Id: Ib9f65a4523222f1224d51534c5061f90501b59d3 Signed-off-by: Stephen Finucane <stephenfin@redhat.com> |
||
---|---|---|
devstack | ||
doc | ||
examples | ||
extras | ||
openstack | ||
playbooks | ||
releasenotes | ||
roles/deploy-clouds-config | ||
tools | ||
zuul.d | ||
.coveragerc | ||
.git-blame-ignore-revs | ||
.gitignore | ||
.gitreview | ||
.mailmap | ||
.pre-commit-config.yaml | ||
.stestr.conf | ||
babel.cfg | ||
bindep.txt | ||
CONTRIBUTING.rst | ||
docs-requirements.txt | ||
HACKING.rst | ||
include-acceptance-regular-user.txt | ||
LICENSE | ||
MANIFEST.in | ||
post_test_hook.sh | ||
README.rst | ||
requirements.txt | ||
setup.cfg | ||
setup.py | ||
SHADE-MERGE-TODO.rst | ||
test-requirements.txt | ||
tox.ini |
openstacksdk
openstacksdk is a client library for building applications to work with OpenStack clouds. The project aims to provide a consistent and complete set of interactions with OpenStack's many services, along with complete documentation, examples, and tools.
It also contains an abstraction interface layer. Clouds can do many things, but there are probably only about 10 of them that most people care about with any regularity. If you want to do complicated things, the per-service oriented portions of the SDK are for you. However, if what you want is to be able to write an application that talks to any OpenStack cloud regardless of configuration, then the Cloud Abstraction layer is for you.
More information about the history of openstacksdk can be found at https://docs.openstack.org/openstacksdk/latest/contributor/history.html
Getting started
openstacksdk aims to talk to any OpenStack cloud. To do this, it
requires a configuration file. openstacksdk favours
clouds.yaml
files, but can also use environment variables.
The clouds.yaml
file should be provided by your cloud
provider or deployment tooling. An example:
clouds:
mordred:
region_name: Dallas
auth:
username: 'mordred'
password: XXXXXXX
project_name: 'demo'
auth_url: 'https://identity.example.com'
openstacksdk will look for clouds.yaml
files in the
following locations:
.
(the current directory)$HOME/.config/openstack
/etc/openstack
openstacksdk consists of three layers. Most users will make use of
the proxy layer. Using the above clouds.yaml
,
consider listing servers:
import openstack
# Initialize and turn on debug logging
=True)
openstack.enable_logging(debug
# Initialize connection
= openstack.connect(cloud='mordred')
conn
# List the servers
for server in conn.compute.servers():
print(server.to_dict())
openstacksdk also contains a higher-level cloud layer based on logical operations:
import openstack
# Initialize and turn on debug logging
=True)
openstack.enable_logging(debug
# Initialize connection
= openstack.connect(cloud='mordred')
conn
# List the servers
for server in conn.list_servers():
print(server.to_dict())
The benefit of this layer is mostly seen in more complicated operations that take multiple steps and where the steps vary across providers. For example:
import openstack
# Initialize and turn on debug logging
=True)
openstack.enable_logging(debug
# Initialize connection
= openstack.connect(cloud='mordred')
conn
# Upload an image to the cloud
= conn.create_image(
image 'ubuntu-trusty', filename='ubuntu-trusty.qcow2', wait=True)
# Find a flavor with at least 512M of RAM
= conn.get_flavor_by_ram(512)
flavor
# Boot a server, wait for it to boot, and then do whatever is needed
# to get a public IP address for it.
conn.create_server('my-server', image=image, flavor=flavor, wait=True, auto_ip=True)
Finally, there is the low-level resource layer. This provides support for the basic CRUD operations supported by REST APIs and is the base building block for the other layers. You typically will not need to use this directly:
import openstack
import openstack.config.loader
import openstack.compute.v2.server
# Initialize and turn on debug logging
=True)
openstack.enable_logging(debug
# Initialize connection
= openstack.connect(cloud='mordred')
conn
# List the servers
for server in openstack.compute.v2.server.Server.list(session=conn.compute):
print(server.to_dict())
Configuration
openstacksdk uses the openstack.config
module to parse
configuration. openstack.config
will find cloud
configuration for as few as one cloud and as many as you want to put in
a config file. It will read environment variables and config files, and
it also contains some vendor specific default values so that you don't
have to know extra info to use OpenStack
- If you have a config file, you will get the clouds listed in it
- If you have environment variables, you will get a cloud named envvars
- If you have neither, you will get a cloud named defaults with base defaults
You can view the configuration identified by openstacksdk in your
current environment by running openstack.config.loader
. For
example:
$ python -m openstack.config.loader
More information at https://docs.openstack.org/openstacksdk/latest/user/config/configuration.html
Supported services
The following services are currently supported. A full list of all available OpenStack service can be found in the Project Navigator.
Note
Support here does not guarantee full-support for all APIs. It simply means some aspect of the project is supported.
Service | Description | Cloud Layer | Proxy & Resource Layer |
---|---|---|---|
Compute | |||
Nova | Compute | ✔ | ✔ (openstack.compute ) |
Hardware Lifecycle | |||
Ironic | Bare metal provisioning | ✔ | ✔ (openstack.baremetal ,
openstack.baremetal_introspection ) |
Cyborg | Lifecycle management of accelerators | ✔ | ✔ (openstack.accelerator ) |
Storage | |||
Cinder | Block storage | ✔ | ✔ (openstack.block_storage ) |
Swift | Object store | ✔ | ✔ (openstack.object_store ) |
Cinder | Shared filesystems | ✔ | ✔ (openstack.shared_file_system ) |
Networking | |||
Neutron | Networking | ✔ | ✔ (openstack.network ) |
Octavia | Load balancing | ✔ | ✔ (openstack.load_balancer ) |
Designate | DNS | ✔ | ✔ (openstack.dns ) |
Shared services | |||
Keystone | Identity | ✔ | ✔ (openstack.identity ) |
Placement | Placement | ✔ | ✔ (openstack.placement ) |
Glance | Image storage | ✔ | ✔ (openstack.image ) |
Barbican | Key management | ✔ | ✔ (openstack.key_manager ) |
Workload provisioning | |||
Magnum | Container orchestration engine provisioning | ✔ | ✔ (openstack.container_infrastructure_management ) |
Orchestration | |||
Heat | Orchestration | ✔ | ✔ (openstack.orchestration ) |
Senlin | Clustering | ✔ | ✔ (openstack.clustering ) |
Mistral | Workflow | ✔ | ✔ (openstack.workflow ) |
Zaqar | Messaging | ✔ | ✔ (openstack.message ) |
Application lifecycle | |||
Masakari | Instances high availability service | ✔ | ✔ (openstack.instance_ha ) |