tripleo-heat-templates/puppet/services/README.rst
melissaml 59b2dcfcd3 trivialfix:fix a typo
Change-Id: Iea6ca2eaed82eee0cbd29fed20971ffbe257dac8
2018-06-05 17:33:05 +08:00

226 lines
8.8 KiB
ReStructuredText

========
services
========
A TripleO nested stack Heat template that encapsulates generic configuration
data to configure a specific service. This generally includes everything
needed to configure the service excluding the local bind ports which
are still managed in the per-node role templates directly (controller.yaml,
compute.yaml, etc.). All other (global) service settings go into
the puppet/service templates.
Input Parameters
----------------
Each service may define its own input parameters and defaults.
Operators will use the parameter_defaults section of any Heat
environment to set per service parameters.
Apart from sevice specific inputs, there are few default parameters for all
the services. Following are the list of default parameters:
* ServiceData: Mapping of service specific data. It is used to encapsulate
all the service specific data. As of now, it contains net_cidr_map, which
contains the CIDR map for all the networks. Additional data will be added
as and when required.
* ServiceNetMap: Mapping of service_name -> network name. Default mappings
for service to network names are defined in
../network/service_net_map.j2.yaml, which may be overridden via
ServiceNetMap values added to a user environment file via
parameter_defaults.
* EndpointMap: Mapping of service endpoint -> protocol. Contains a mapping of
endpoint data generated for all services, based on the data included in
../network/endpoints/endpoint_data.yaml.
* DefaultPasswords: Mapping of service -> default password. Used to pass some
passwords from the parent templates, this is a legacy interface and should
not be used by new services.
* RoleName: Name of the role on which this service is deployed. A service can
be deployed in multiple roles. This is an internal parameter (should not be
set via environment file), which is fetched from the name attribute of the
roles_data.yaml template.
* RoleParameters: Parameter specific to a role on which the service is
applied. Using the format "<RoleName>Parameters" in the parameter_defaults
of user environment file, parameters can be provided for a specific role.
For example, in order to provide a parameter specific to "Compute" role,
below is the format::
parameter_defaults:
ComputeParameters:
Param1: value
Config Settings
---------------
Each service may define three ways in which to output variables to configure Hiera
settings on the nodes.
* config_settings: the hiera keys will be pushed on all roles of which the service
is a part of.
* global_config_settings: the hiera keys will be distributed to all roles
* service_config_settings: Takes an extra key to wire in values that are
defined for a service that need to be consumed by some other service.
For example:
service_config_settings:
haproxy:
foo: bar
This will set the hiera key 'foo' on all roles where haproxy is included.
Deployment Steps
----------------
Each service may define an output variable which returns a puppet manifest
snippet that will run at each of the following steps. Earlier manifests
are re-asserted when applying latter ones.
* config_settings: Custom hiera settings for this service.
* global_config_settings: Additional hiera settings distributed to all roles.
* step_config: A puppet manifest that is used to step through the deployment
sequence. Each sequence is given a "step" (via hiera('step') that provides
information for when puppet classes should activate themselves.
Steps correlate to the following:
1) Load Balancer configuration
2) Core Services (Database/Rabbit/NTP/etc.)
3) Early Openstack Service setup (Ringbuilder, etc.)
4) General OpenStack Services
5) Service activation (Pacemaker)
It is also possible to use Mistral actions or workflows together with
a deployment step, these are executed before the main configuration run.
To describe actions or workflows from within a service use:
* workflow_tasks: One or more workflow task properties
which expects a map where the key is the step and the value a list of
dictionaries descrbing each a workflow task, for example::
workflow_tasks:
step2:
- name: echo
action: std.echo output=Hello
step3:
- name: external
workflow: my-pre-existing-workflow-name
input:
workflow_param1: value
workflow_param2: value
The Heat guide for the `OS::Mistral::Workflow task property
<https://docs.openstack.org/developer/heat/template_guide/openstack.html#OS::Mistral::Workflow-prop-tasks>`_
has more details about the expected dictionary.
* external_deploy_tasks: Ansible tasks to be run each step on the undercloud
where a variable "step" is provided to enable conditionally running tasks
at a given step.
* external_post_deploy_tasks: Ansible tasks to be run on the undercloud
after all other deploy steps have completed.
Batch Upgrade Steps (deprecated)
--------------------------------
Note: the `upgrade_batch_tasks` are no longer used and deprecated for Queens.
The information below applies to upgrade_batch_tasks as they were used for the
Ocata major upgrade. The `upgrade_batch_tasks` were used exclusively by the
ceph services and for Pike ceph is now configured by ceph-ansible.
Each service template may optionally define a `upgrade_batch_tasks` key, which
is a list of ansible tasks to be performed during the upgrade process.
Similar to the step_config, we allow a series of steps for the per-service
upgrade sequence, defined as ansible tasks with a tag e.g "step1" for the first
step, "step2" for the second, etc (currently only two steps are supported, but
more may be added when required as additional services get converted to batched
upgrades).
Note that each step is performed in batches, then we move on to the next step
which is also performed in batches (we don't perform all steps on one node,
then move on to the next one which means you can sequence rolling upgrades of
dependent services via the step value).
The tasks performed at each step is service specific, but note that all batch
upgrade steps are performed before the `upgrade_tasks` described below. This
means that all services that support rolling upgrades can be upgraded without
downtime during `upgrade_batch_tasks`, then any remaining services are stopped
and upgraded during `upgrade_tasks`
The default batch size is 1, but this can be overridden for each role via the
`upgrade_batch_size` option in roles_data.yaml
Update Steps
------------
Each service template may optionally define a `update_tasks` key,
which is a list of ansible tasks to be performed during the minor
update process. These are executed in a rolling manner node-by-node.
We allow a series of steps for the per-service update sequence via
conditionals referencing a step variable e.g `when: step|int == 2`.
Pre-upgrade Rolling Steps
-------------------------
Each service template may optionally define a
`pre_upgrade_rolling_tasks` key, which is a list of ansible tasks to
be performed before the main upgrade phase, and these tasks are
executed in a node-by-node rolling manner on the overcloud, similarly as `update_tasks`.
Upgrade Steps
-------------
Each service template may optionally define a `upgrade_tasks` key, which is a
list of ansible tasks to be performed during the upgrade process.
Similar to the `update_tasks`, we allow a series of steps for the
per-service upgrade sequence, defined as ansible tasks with a "when:
step|int == 1" for the first step, "== 2" for the second, etc.
Steps correlate to the following:
1) Perform any pre-upgrade validations.
2) Stop the control-plane services, e.g disable LoadBalancer, stop
pacemaker cluster and stop any managed resources.
The exact order is controlled by the cluster constraints.
3) Perform a package update and install new packages: A general
upgrade is done, and only new package should go into service
ansible tasks.
4) Start services needed for migration tasks (e.g DB)
5) Perform any migration tasks, e.g DB sync commands
Note that the services are not started in the upgrade tasks - we instead re-run
puppet which does any reconfiguration required for the new version, then starts
the services.
Nova Server Metadata Settings
-----------------------------
One can use the hook of type `OS::TripleO::ServiceServerMetadataHook` to pass
entries to the nova instances' metadata. It is, however, disabled by default.
In order to overwrite it one needs to define it in the resource registry. An
implementation of this hook needs to conform to the following:
* It needs to define an input called `RoleData` of json type. This gets as
input the contents of the `role_data` for each role's ServiceChain.
* This needs to define an output called `metadata` which will be given to the
Nova Server resource as the instance's metadata.