Dan Prince 00842cf23a Update/combine docker/services/README.rst
This moves the contents of docker/services/README.rst into
deployment/README.rst and updates several sections with recent
architecture changes which also reflect naming changes.

Change-Id: I24dba1ff841da82ceaf80484fda756cafb68db06
2019-04-14 18:15:14 -04:00

192 lines
7.6 KiB
ReStructuredText

===================
TripleO Deployments
===================
This directory contains files that represent individual service deployments,
orchestration tools, and the configuration tools used to deploy them.
Directory Structure
-------------------
Each logical grouping of services will have a directory. Example: 'timesync'.
Within this directory related timesync services would exist to for example
configure timesync services on baremetal or via containers.
Filenaming conventions
----------------------
As a convention each deployments service filename will reflect both
the deployment engine (baremetal, or containers) along with the
config tool used to deploy that service.
The convention is <service-name>-<engine>-<config management tool>.
Examples:
deployment/aodh/aodh-api-container-puppet.yaml (containerized Aodh service configured with Puppet)
deployment/aodh/aodh-api-container-ansible.yaml (containerized Aodh service configured with Ansible)
deployment/timesync/chrony-baremetal-ansible.yaml (baremetal Chrony service configured with Ansible)
deployment/timesync/chrony-baremetal-puppet.yaml (baremetal Chrony service configured with Puppet)
Building Kolla Images
---------------------
TripleO currently relies on Kolla(Dockerfile) containers. Kolla supports
container customization and we are making use of this feature within TripleO
to inject puppet (our configuration tool of choice) into the Kolla base images.
A variety of other customizations are being made via the
tripleo-common/container-images/tripleo_kolla_template_overrides.j2 file.
To build Kolla images for TripleO adjust your kolla config [*]_ to build your
centos base image with puppet using the example below:
.. code-block::
$ cat template-overrides.j2
{% extends parent_template %}
{% set base_centos_binary_packages_append = ['puppet'] %}
{% set nova_scheduler_packages_append = ['openstack-tripleo-common'] %}
kolla-build --base centos --template-override template-overrides.j2
..
.. [*] See the
`override file <https://github.com/openstack/tripleo-common/blob/master/container-images/tripleo_kolla_template_overrides.j2>`_
which can be used to build Kolla packages that work with TripleO.
Containerized Deployment Template Structure
-------------------------------------------
Each deployment template may define a set of output values control
the underlying service deployment in a variety of ways. These output sections
are specific to the TripleO deployment architecture. The following sections
are available for containerized services.
* config_settings: This section contains service specific hiera data
can be used to generate config files for each service. This data
is ultimately processed via the container-puppet.py tool which
generates config files for each service according to the settings here.
* kolla_config: Contains YAML that represents how to map config files
into the kolla container. This config file is typically mapped into
the container itself at the /var/lib/kolla/config_files/config.json
location and drives how kolla's external config mechanisms work.
* docker_config: Data that is passed to paunch tool to configure
a container, or step of containers at each step. See the available steps
documented below which are implemented by TripleO's cluster deployment
architecture.
* puppet_config: This section is a nested set of key value pairs
that drive the creation of config files using puppet.
Required parameters include:
* puppet_tags: Puppet resource tag names that are used to generate config
files with puppet. Only the named config resources are used to generate
a config file. Any service that specifies tags will have the default
tags of 'file,concat,file_line,augeas,cron' appended to the setting.
Example: keystone_config
* config_volume: The name of the volume (directory) where config files
will be generated for this service. Use this as the location to
bind mount into the running Kolla container for configuration.
* config_image: The name of the container image that will be used for
generating configuration files. This is often the same container
that the runtime service uses. Some services share a common set of
config files which are generated in a common base container.
* step_config: This setting controls the manifest that is used to
create container config files via puppet. The puppet tags below are
used along with this manifest to generate a config directory for
this container.
* container_puppet_tasks: This section provides data to drive the
container-puppet.py tool directly. The task is executed only once
within the cluster (not on each node) and is useful for several
puppet snippets we require for initialization of things like
keystone endpoints, database users, etc. See container-puppet.py
for formatting.
Deployment steps
----------------
Similar to baremetal containers are brought up in a stepwise manner.
The current architecture supports bringing up baremetal services alongside
of containers. For each step the baremetal puppet manifests are executed
first and then any containers are brought up afterwards.
Steps correlate to the following:
Pre) Containers config files generated per hiera settings.
1) Load Balancer configuration baremetal
a) step 1 baremetal
b) step 1 containers
2) Core Services (Database/Rabbit/NTP/etc.)
a) step 2 baremetal
b) step 2 containers
3) Early Openstack Service setup (Ringbuilder, etc.)
a) step 3 baremetal
b) step 3 containers
4) General OpenStack Services
a) step 4 baremetal
b) step 4 containers
c) Keystone containers post initialization (tenant,service,endpoint creation)
5) Service activation (Pacemaker), online data migration
a) step 5 baremetal
b) step 5 containers
Update steps:
-------------
All services have an associated update_tasks output that is an ansible
snippet that will be run during update in an rolling update that is
expected to run in a rolling update fashion (one node at a time)
For Controller (where pacemaker is running) we have the following states:
1. Step=1: stop the cluster on the updated node;
2. Step=2: Pull the latest image and retag the it pcmklatest
3. Step=3: yum upgrade happens on the host.
4. Step=4: Restart the cluster on the node
5. Step=5: Verification:
Currently we test that the pacemaker services are running.
Then the usual deploy steps are run which pull in the latest image for
all containerized services and the updated configuration if any.
Note: as pacemaker is not containerized, the points 1 and 4 happen in
puppet/services/pacemaker.yaml.
Fast-forward Upgrade Steps
--------------------------
Each service template may optionally define a `fast_forward_upgrade_tasks` key,
which is a list of Ansible tasks to be performed during the fast-forward
upgrade process. As with Upgrade steps each task is associated to a particular
step provided as a variable and used along with a release variable by a basic
conditional that determines when the task should run.
Steps are broken down into two categories, prep tasks executed across all hosts
and bootstrap tasks executed on a single host for a given role.
The individual steps then correspond to the following tasks during the upgrade:
Prep steps:
- Step=0: Check running services
- Step=1: Stop the service
- Step=2: Stop the cluster
- Step=3: Update repos
Bootstrap steps:
- Step=4: DB backups
- Step=5: Pre package update commands
- Step=6: Package updates
- Step=7: Post package update commands
- Step=8: DB syncs
- Step=9: Verification