infra-manual/doc/source/testing.rst

166 lines
7.9 KiB
ReStructuredText

:title: Test Environment Information
.. _test_env:
Test Environment
################
This document should give you a good idea of what you can count on
in the test environments managed by the OpenDev team. This
information may be useful when creating new jobs or debugging existing
jobs.
Unprivileged Single Use VMs
===========================
All jobs currently run on these nodes. These are single use VMs
booted in OpenStack clouds. You should start here unless you know you
have a reason to use a privileged VM.
Each single use VM has these attributes which you can count on:
* Every instance has a public IP address. This may be an IPv4 address
or an IPv6 address or maybe both.
* You may not get both, it is entirely valid for an instance to have
only a public IPv6 address and for another to have only a public
IPv4 address.
* In some cases the public IPv4 address is provided via NAT and the
instance will only see a private IPv4 address. In some cases
instances may have both a public and a private IPv4 address.
* It is also possible that these addresses are on multiple network
interfaces.
* CPUs are all running x86-64.
* There is at least 8GB of system memory available.
* There is at least 80GB of disk available. This disk may not all be
exposed in a single filesystem partition and so not all mounted at
/. Any additional disk can be partitioned, formatted and mounted
by the root user; though if you need this it is recommended to use
devstack-gate which takes care of it automatically and mounts the
extra space on /opt early in its setup phase.
To give you an idea of what this can look like most clouds just give
us an 80GB or bigger /. One cloud gives us a 40GB / and 80GB /opt.
Generally you will want to write large things to /opt to take
advantage of available disk.
* Swap is not guaranteed to be present. Some clouds give us swap and
others do not. Some tests (like devstack-gate based tests) will create
swap either using a second disk device if available or by using a
file otherwise. Be aware you may need to create swap if you need it.
* Filesystems are ext4. If you need other filesystems you can create
them on files mounted via loop devices.
* Package mirrors for PyPi, NPM, Ubuntu, Debian, and Centos 7 (including
EPEL) are provided and preconfigured on these instances before starting
any jobs. We also have mirrors for Ceph and Ubuntu Cloud Archive that
jobs must opt into using (details for these are written to disk on the
test instances but are disabled by default).
Because these instances are single use we are able to give jobs full
root access to them. This means you can install system packages, modify
partition tables, and so on. Note that if you reboot the test instances
you will need to restart the zuul-console process.
If jobs need to perform privileged actions they can do so using Zuul v3's
secrets. Things like AFS access tokens or dockerhub credentials can
be stored in Zuul secrets then used by jobs to perform privileged
actions requiring this data. Please refer to the Zuul documentation
for more info.
Known Differences to Watch Out For
==================================
* Underlying hypervisors are not all the same. You may run into KVM
or Xen and possibly others depending on the cloud in use.
* CPU count, speed, and supported processor flags differ, sometimes
even within the same cloud region.
* Nested virt is not available in all clouds. And in clouds where it
is enabled we have observed a higher rate of crashed test VMs when
using it. As a result we enforce qemu when running devstack and
may further restrict the use of nested virt.
* Some clouds give us multiple network interfaces, some only give
us one. In the case of multiple network interfaces some clouds
give all of them Internet routable addresses and some others do
not.
* Geographic location is widely variable. We have instances all across
North America and in Europe. This may affect network performance
between instances and network resources geographically distant.
* Some network protocols may be blocked in some clouds. Specfically
we have had problems with GRE. You can rely on TCP, UDP, and ICMP
being functional on all of our clouds.
* Network interface MTU of 1500 is not guaranteed. Some clouds give
us smaller MTUs due to use of overlay networking. Test jobs
should check interface MTUs and use an appropriate value for the
current instance if creating new interfaces or bridges.
Why are Jobs for Changes Queued for a Long Time
===============================================
We have a finite number of resources to run jobs on. We process jobs
for changes in order based on a priority queuing system. This priority
queue assigns test resources to Zuul queues based on the number of
total changes in that queue. Changes at the heads of these queues are
assigned resources before those at the end of the queues.
We have done this to ensure that large projects with many changes and
long running jobs do not starve small projects with few changes and short
jobs.
In order to make the queues run quicker there are several variables we
can change:
#. Lower demand. Fewer changes and/or jobs will result in less demand for
resources increasing availability for the changes that remain.
#. Reduce job resource costs. Reducing job runtime means those resources
can be reused sooner by other jobs. Keep in mind that multinode jobs
use a whole integer multiple more resources than single node jobs.
You should only use multinode jobs where necessary to test specific
interactions or to fit a complex test case into the resources we have.
#. Improve job reliability. If jobs fail because the tests or software
under test are unreliable then we have to run more jobs to successfully
merge our software. This effect is compounded by our gate queues because
anytime we have a change that fails we must remove it from the queue,
rebuild the queue without that change, then restart all jobs in the queue
with that change evicted.
Keep in mind that we are also dog fooding OpenStack to run OpenStack's CI
system. This means that a more reliable OpenStack is able to provide
resources to our CI system effectively. Fixing OpenStack in this case
is a win win situation.
#. Add resources to our pools. If we have more total resources then we will
have more to spread around.
In general, we would like to see our software perform the testing that the
developers feel is necessary. We should do so responsibly. What this means
is instead of deleting jobs or ignoring changes we should improve our test
reliability to ensure changes exit queues as quickly as possible with
minimal resource cost. This then ensures the changes behind are able to get
resources quickly.
We are also always happy to add resources if they are available, but the
priority from the project should be to ensure we are using what we do have
responsibly.
.. _handling-zuul-secrets:
Handling Zuul Secrets
=====================
Zuul secrets are the expected means of safely incorporating secret data
(e.g., passwords or cryptographic keys) into job definitions. See the
:ref:`using-secrets` section of the Project Driver's Guide chapter for
some basic user guidance on this feature.
Credentials and similar secrets encrypted for the per-project keys Zuul
uses cannot be decrypted except by Zuul and (by extension) the root
sysadmins operating the Zuul service and maintaining the job nodes where
those secrets are utilized. By policy, these sysadmins will not
deliberately decrypt secrets or access decrypted secrets, aside from
non-production test vectors used to ensure the feature is working
correctly. They will not under any circumstances be able to provide
decrypted copies of your project's secrets on request, and so you cannot
consider the encrypted copy as a backup but should instead find ways to
safely maintain (and if necessary share) your own backup copies if
you're unable to easily revoke/replace them when lost.