Note to highlight that the rpc_response_timeout will need to be increased, especially in replication scenarios where the create operation will take longer. Change-Id: I0c1b1edb29e374cb9d9eefa87c2f27a9b97d86a5
138 KiB
Dell EMC PowerMax iSCSI and FC drivers
The Dell EMC PowerMax drivers, PowerMaxISCSIDriver
and
PowerMaxFCDriver
, support the use of Dell EMC PowerMax and
VMAX storage arrays with the Cinder Block Storage project. They both
provide equivalent functions and differ only in support for their
respective host attachment methods.
The drivers perform volume operations by communicating with the back-end PowerMax storage management software. They use the Requests HTTP library to communicate with a Unisphere for PowerMax instance, using a RESTAPI interface in the backend to perform PowerMax and VMAX storage operations.
Note
DEPRECATION NOTICE: The VMAX Hybrid series will not be supported from
the Z
release of OpenStack. Also, any All Flash array
running HyperMaxOS 5977 will no longer be supported from the
Z
release onwards.
Note
While PowerMax
will be used throughout this document, it
will be used to collectively categorize the following supported arrays,
PowerMax 2000, 8000, VMAX All Flash 250F, 450F, 850F and 950F and VMAX-Hybrid.
System requirements and licensing
The Dell EMC PowerMax Cinder driver supports the VMAX-Hybrid series, VMAX All-Flash series and the PowerMax arrays.
The array operating system software, Solutions Enabler 9.2.2 series, and Unisphere for PowerMax 9.2.2 series are required to run Dell EMC PowerMax Cinder driver for the Wallaby release. Please refer to support-matrix-table for the support matrix of previous OpenStack versions.
Download Solutions Enabler and Unisphere from the Dell EMC's support web site (login is required). See the Dell EMC Solutions Enabler 9.2.2 Installation and Configuration Guide and Dell EMC Unisphere for PowerMax Installation Guide at the Dell EMC Support site.
Note
At the time each OpenStack release, support-matrix-table was the recommended PowerMax management software and OS combinations. Please reach out your local PowerMax representative to see if these versions are still valid.
OpenStack | Unisphere for PowerMax | PowerMax OS |
---|---|---|
Xena | 9.2.2 | 5978.711 |
Wallaby | 9.2.1 | 5978.711 |
Victoria | 9.2.x | 5978.669 |
Ussuri | 9.1.x | 5978.479 |
Train | 9.1.x | 5978.444 |
Stein | 9.0.x | 5978.221 |
Note
A Hybrid array can only run HyperMax OS 5977, and is still supported
until the Z
release of OpenStack. Some functionality will
not be available in older versions of the OS. If in any doubt, please
contact your local PowerMax representative.
Note
Newer versions of Unisphere for PowerMax and PowerMax OS are not
retrospectively tested on older versions of OpenStack. If it is
necessary to upgrade, the older REST endpoints will be used. For
example, in Ussuri, if upgrading to Unisphere for PowerMax 9.2, the
older 91
endpoints will be used.
Required PowerMax software suites for OpenStack
The storage system requires a Unisphere for PowerMax (SMC) eLicense.
PowerMax
There are two licenses for the PowerMax 2000 and 8000:
- Essentials software package
- Pro software package
The Dell EMC PowerMax cinder driver requires the Pro software package.
All Flash
For full functionality including SRDF for the VMAX All Flash, the FX package, or the F package plus the SRDF a la carte add on is required.
Hybrid
There are five Dell EMC Software Suites sold with the VMAX-Hybrid arrays:
- Base Suite
- Advanced Suite
- Local Replication Suite
- Remote Replication Suite
- Total Productivity Pack
The Dell EMC PowerMax Cinder driver requires the Advanced Suite and the Local Replication Suite or the Total Productivity Pack (it includes the Advanced Suite and the Local Replication Suite) for the VMAX Hybrid.
Using PowerMax Remote Replication functionality will also require the Remote Replication Suite.
Note
Each are licensed separately. For further details on how to get the relevant license(s), reference eLicensing Support below.
eLicensing support
To activate your entitlements and obtain your PowerMax license files, visit the Service Center on Dell EMC Support, as directed on your License Authorization Code (LAC) letter emailed to you.
For help with missing or incorrect entitlements after activation (that is, expected functionality remains unavailable because it is not licensed), contact your EMC account representative or authorized reseller.
For help with any errors applying license files through Solutions Enabler, contact the Dell EMC Customer Support Center.
If you are missing a LAC letter or require further instructions on activating your licenses through the Online Support site, contact EMC's worldwide Licensing team at
licensing@emc.com
or call:North America, Latin America, APJK, Australia, New Zealand: SVC4EMC (800-782-4362) and follow the voice prompts.
EMEA: +353 (0) 21 4879862 and follow the voice prompts.
PowerMax for OpenStack Cinder customer support
If you require help or assistance with PowerMax and Cinder please open a Service Request (SR) through standard support channels at Dell EMC Support. When opening a SR please include the following information:
- Array Model & uCode level
- Unisphere for PowerMax version
- Solutions Enabler Version
- OpenStack host Operating System (Ubuntu, RHEL, etc.)
- OpenStack version (Usurri, Train, etc.)
- PowerMax for Cinder driver version, this can be located in the
comments in the PowerMax driver file:
{cinder_install_dir}/cinder/volume/drivers/dell_emc/powermax/fc.py
- Cinder logs
- Detailed description of the issue you are encountering
Supported operations
PowerMax drivers support these operations:
- Create, list, delete, attach, and detach volumes
- Create, list, and delete volume snapshots
- Copy an image to a volume
- Copy a volume to an image
- Clone a volume
- Extend a volume
- Retype a volume (Host and storage assisted volume migration)
- Create a volume from a snapshot
- Create and delete generic volume group
- Create and delete generic volume group snapshot
- Modify generic volume group (add and remove volumes)
- Create generic volume group from source
- Live Migration
- Volume replication SRDF/S, SRDF/A and SRDF Metro
- Quality of service (QoS)
- Manage and unmanage volumes and snapshots
- List Manageable Volumes/Snapshots
- Backup create, delete, list, restore and show
PowerMax drivers also support the following features:
- Dynamic masking view creation
- Dynamic determination of the target iSCSI IP address
- iSCSI multipath support
- Oversubscription
- Service Level support
- SnapVX support
- Compression support(All Flash and PowerMax)
- Deduplication support(PowerMax)
- CHAP Authentication
- Multi-attach support
- Volume Metadata in logs
- Encrypted Volume support
- Extending attached volume
- Replicated volume retype support
- Retyping attached(in-use) volume
- Unisphere High Availability(HA) support
- Online device expansion of a metro device
- Rapid TDEV deallocation of deletes
- Multiple replication devices
- PowerMax array and storage group tagging
- Short host name and port group templates
- Snap id support
- Seamless Live Migration from SMI-S support
- Port group & port performance load balancing
Note
In certain cases, when creating a volume from a source snapshot or source volume, subsequent operations using the volumes may fail due to a missing snap_name exception. A manual refresh on the connected Unisphere instance or waiting until another operation automatically refreshes the connected Unisphere instance, will alleviate this issue.
PowerMax naming conventions
Note
shortHostName
will be altered using the following
formula, if its length exceeds 16 characters. This is because the
storage group and masking view names cannot exceed 64 characters:
if len(shortHostName) > 16:
1. Perform md5 hash on the shortHostName
2. Convert output of 1. to hex
3. Take last 6 characters of shortHostName and append output of 2.
4. If the length of output of 3. exceeds 16 characters, join the
first 8 characters and last 8 characters.
Note
portgroup_name
will be altered using the following
formula, if its length exceeds 12 characters. This is because the
storage group and masking view names cannot exceed 64 characters:
if len(portgroup_name) > 12:
1. Perform md5 hash on the portgroup_name
2. Convert output of 1. to hex
3. Take last 6 characters of portgroup_name and append output of 2.
4. If the length of output of 3. exceeds 12 characters, join the
first 6 characters and last 6 characters.
Masking view names
Masking views are dynamically created by the PowerMax FC and iSCSI
drivers using the following naming conventions. [protocol]
is either I
for volumes attached over iSCSI or
F
for volumes attached over Fibre Channel.
OS-[shortHostName]-[protocol]-[portgroup_name]-MV
Initiator group names
For each host that is attached to PowerMax volumes using the drivers,
an initiator group is created or re-used (per attachment type). All
initiators of the appropriate type known for that host are included in
the group. At each new attach volume operation, the PowerMax driver
retrieves the initiators (either WWNNs or IQNs) from OpenStack and adds
or updates the contents of the Initiator Group as required. Names are of
the following format. [protocol]
is either I
for volumes attached over iSCSI or F
for volumes attached
over Fibre Channel.
OS-[shortHostName]-[protocol]-IG
Note
Hosts attaching to OpenStack managed PowerMax storage cannot also attach to storage on the same PowerMax that are not managed by OpenStack.
FA port groups
PowerMax array FA ports to be used in a new masking view are retrieved from the port group provided as the extra spec on the volume type, or chosen from the list provided in the Dell EMC configuration file.
Storage group names
As volumes are attached to a host, they are either added to an
existing storage group (if it exists) or a new storage group is created
and the volume is then added. Storage groups contain volumes created
from a pool, attached to a single host, over a single connection type
(iSCSI or FC). [protocol]
is either I
for
volumes attached over iSCSI or F
for volumes attached over
Fibre Channel. PowerMax Cinder driver utilizes cascaded storage groups
-a parent
storage group which is associated with the
masking view, which contains child
storage groups for each
configured SRP/slo/workload/compression-enabled or
disabled/replication-enabled or disabled combination.
PowerMax, VMAX All Flash and VMAX-Hybrid
Parent storage group:
OS-[shortHostName]-[protocol]-[portgroup_name]-SG
Child storage groups:
OS-[shortHostName]-[SRP]-[ServiceLevel/Workload]-[portgroup_name]-CD-RE
Note
CD and RE are only set if compression is explicitly disabled or replication explicitly enabled. See the compression 11. All Flash compression support and replication Volume replication support sections below.
Note
For VMAX All Flash with PowerMax OS (5978) or greater, workload if set will be ignored and set to NONE.
Default storage group | Attached child storage group | Management Group | Replication Type |
---|---|---|---|
OS-[SRP]-[SL]-[WL]-SG | OS-[HOST]-[SRP]-[SL/WL]-[PG] | N/A | None |
OS-[SRP]-[SL]-[WL]-RE-SG | OS-[HOST]-[SRP]-[SL/WL]-[PG]-RE | N/A | Synchronous |
OS-[SRP]-[SL]-[WL]-RA-SG | OS-[HOST]-[SRP]-[SL/WL]-[PG]-RA | OS-[RDFG]-Asynchronous-rdf-sg | Asynchronous |
OS-[SRP]-[SL]-[WL]-RM-SG | OS-[HOST]-[SRP]-[SL/WL]-[PG]-RM | OS-[RDFG]-Metro-rdf-sg | Metro |
PowerMax driver integration
1. Prerequisites
Download Solutions Enabler from Dell EMC Support and install it.
You can install Solutions Enabler on a non-OpenStack host. Supported platforms include different flavors of Windows, Red Hat, and SUSE Linux. Solutions Enabler can be installed on a physical server, or as a Virtual Appliance (a VMware ESX server VM). Additionally, starting with HYPERMAX OS Q3 2015, you can manage VMAX3 arrays using the Embedded Management (eManagement) container application. See the
Dell EMC Solutions Enabler 9.2.1 Installation and Configuration Guide
on Dell EMC Support for more details.Note
You must discover storage arrays before you can use the PowerMax drivers. Follow instructions in
Dell EMC Solutions Enabler 9.2.1 Installation and Configuration Guide
on Dell EMC Support for more details.Download Unisphere from Dell EMC Support and install it.
Unisphere can be installed in local, remote, or embedded configurations
- i.e., on the same server running Solutions Enabler; on a server connected to the Solutions Enabler server; or using the eManagement container application (containing Solutions Enabler and Unisphere for PowerMax). See
Dell EMC Solutions Enabler 9.2.1 Installation and Configuration Guide
at Dell EMC Support.
2. FC zoning with PowerMax
Zone Manager is required when there is a fabric between the host and array. This is necessary for larger configurations where pre-zoning would be too complex and open-zoning would raise security concerns.
3. iSCSI with PowerMax
- Make sure the
open-iscsi
package (or distro equivalent) is installed on all Compute nodes.
Note
You can only ping the PowerMax iSCSI target ports when there is a valid masking view. An attach operation creates this masking view.
4. Configure block storage in cinder.conf
cinder.volume.drivers.dell_emc.powermax.common
Note
san_api_port
is 8443
by default but can be
changed if necessary. For the purposes of this documentation the default
is assumed so the tag will not appear in any of the
cinder.conf
extracts below.
Note
PowerMax PortGroups
must be pre-configured to expose
volumes managed by the array. Port groups can be supplied in
cinder.conf
, or can be specified as an extra spec
storagetype:portgroupname
on a volume type. If a port group
is set on a volume type as an extra specification it takes precedence
over any port groups set in cinder.conf
. For more
information on port and port group selection please see the section
port group & port load balancing
.
Note
PowerMax SRP
cannot be changed once configured and
in-use. SRP renaming on the PowerMax array is not supported.
Note
Service Level can be added to cinder.conf
when the
backend is the default case and there is no associated volume type. This
not a recommended configuration as it is too restrictive. Workload is
NONE
for PowerMax and any All Flash with PowerMax OS (5978)
or greater.
PowerMax parameter | cinder.conf parameter | Default | Required |
---|---|---|---|
|
powermax_service_level |
None |
No |
To configure PowerMax block storage, add the following entries to
/etc/cinder/cinder.conf
:
enabled_backends = CONF_GROUP_ISCSI, CONF_GROUP_FC
[CONF_GROUP_ISCSI]
volume_driver = cinder.volume.drivers.dell_emc.powermax.iscsi.PowerMaxISCSIDriver
volume_backend_name = POWERMAX_ISCSI
powermax_port_groups = [OS-ISCSI-PG]
san_ip = 10.10.10.10
san_login = my_username
san_password = my_password
powermax_array = 000123456789
powermax_srp = SRP_1
[CONF_GROUP_FC]
volume_driver = cinder.volume.drivers.dell_emc.powermax.fc.PowerMaxFCDriver
volume_backend_name = POWERMAX_FC
powermax_port_groups = [OS-FC-PG]
san_ip = 10.10.10.10
san_login = my_username
san_password = my_password
powermax_array = 000123456789
powermax_srp = SRP_1
In this example, two back-end configuration groups are enabled:
CONF_GROUP_ISCSI
and CONF_GROUP_FC
. Each
configuration group has a section describing unique parameters for
connections, drivers and the volume_backend_name
.
5. SSL support
Get the CA certificate of the Unisphere server. This pulls the CA cert file and saves it as
.pem
file:# openssl s_client -showcerts \ -connect my_unisphere_host:8443 \ </dev/null 2>/dev/null \ | openssl x509 -outform PEM > my_unisphere_host.pem
Where
my_unisphere_host
is the hostname of the unisphere instance andmy_unisphere_host.pem
is the name of the.pem
file.Add this path to
cinder.conf
under the PowerMax backend stanza and set SSL verify toTrue
driver_ssl_cert_verify = True driver_ssl_cert_path = /path/to/my_unisphere_host.pem
OR
follow the steps 3-6 below if you would like to add the CA cert to the system certificate bundle instead of specifying the path to cert:OPTIONAL: Copy the
.pem
cert to the system certificate directory and convert to.crt
:# cp my_unisphere_host.pem /usr/share/ca-certificates/ca_cert.crt
OPTIONAL: Update CA certificate database with the following command. Ensure you select to enable the cert from step 3 when prompted:
# sudo dpkg-reconfigure ca-certificates
OPTIONAL: Set a system environment variable to tell the Requests library to use the system cert bundle instead of the default Certifi bundle:
# export REQUESTS_CA_BUNDLE = /etc/ssl/certs/ca-certificates.crt
OPTIONAL: Set cert verification to
True
under the PowerMax backend stanza incinder.conf
:# driver_ssl_cert_verify = True
Ensure
driver_ssl_cert_verify
is set toTrue
incinder.conf
backend stanzas if steps 3-6 are followed, otherwise ensure bothdriver_ssl_cert_path
anddriver_ssl_cert_verify
are set incinder.conf
backend stanzas.
6. Create volume types
Once cinder.conf
has been updated, Openstack
CLI commands need to be issued in order to create and associate
OpenStack volume types with the declared
volume_backend_names
.
Additionally, each volume type will need an associated
pool_name
- an extra specification indicating the service
level/ workload combination to be used for that volume type.
Note
The pool_name
is an additional property which has to be
set and is of the format:
<ServiceLevel>+<SRP>+<Array ID>
. This can
be obtained from the output of the
cinder get-pools--detail
. Workload is NONE for PowerMax or
any All Flash with PowerMax OS (5978) or greater.
There is also the option to assign a port group to a volume type by
setting the storagetype:portgroupname
extra
specification.
$ openstack volume type create POWERMAX_ISCSI_SILVER
$ openstack volume type set --property volume_backend_name=ISCSI_backend \
--property pool_name=Silver+SRP_1+000123456789 \
--property storagetype:portgroupname=OS-PG2 \
POWERMAX_ISCSI_SILVER
$ openstack volume type create POWERMAX_FC_DIAMOND
$ openstack volume type set --property volume_backend_name=FC_backend \
--property pool_name=Gold+SRP_1+000123456789 \
--property storagetype:portgroupname=OS-PG1 \
POWERMAX_FC_GOLD
By issuing these commands, the Block Storage volume type
POWERMAX_ISCSI_SILVER
is associated with the
ISCSI_backend
, a Silver Service Level.
The type POWERMAX_FC_DIAMOND
is associated with the
FC_backend
, a Diamond Service Level.
The ServiceLevel
manages the underlying storage to
provide expected performance. Setting the ServiceLevel
to
None
means that non-FAST managed storage groups will be
created instead (storage groups not associated with any service
level).
openstack volume type set --property pool_name=None+SRP_1+000123456789
Note
PowerMax and VMAX-Hybrid support
Diamond
, Platinum
, Gold
,
Silver
, Bronze
, Optimized
, and
None
service levels. VMAX All Flash running HyperMax OS
(5977) supports Diamond
and None
. VMAX-Hybrid and All Flash support
DSS_REP
, DSS
, OLTP_REP
,
OLTP
, and None
workloads, the latter up until
ucode 5977. Please refer to Stein PowerMax online documentation if you
wish to use workload
. There is no support for workloads in
PowerMax OS (5978) or greater. These will be silently ignored if set for
VMAX All-Flash arrays which have been upgraded to PowerMax OS
(5988).
7. Interval and retries
By default, interval
and retries
are
3
seconds and 200
retries respectively. These
determine how long (interval
) and how many times
(retries
) a user is willing to wait for a single Rest call,
3*200=600seconds
. Depending on usage, these may need to be
overridden by the user in cinder.conf
. For example, if
performance is a factor, then the interval
should be
decreased to check the job status more frequently, and if multiple
concurrent provisioning requests are issued then retries
should be increased so calls will not timeout prematurely.
In the example below, the driver checks every 3 seconds for the status of the job. It will continue checking for 200 retries before it times out.
Add the following lines to the PowerMax backend in
cinder.conf
:
[CONF_GROUP_ISCSI]
volume_driver = cinder.volume.drivers.dell_emc.powermax.iscsi.PowerMaxISCSIDriver
volume_backend_name = POWERMAX_ISCSI
powermax_port_groups = [OS-ISCSI-PG]
san_ip = 10.10.10.10
san_login = my_username
san_password = my_password
powermax_array = 000123456789
powermax_srp = SRP_1
interval = 1
retries = 700
8. CHAP authentication support
This supports one-way initiator CHAP authentication functionality into the PowerMax backend. With CHAP one-way authentication, the storage array challenges the host during the initial link negotiation process and expects to receive a valid credential and CHAP secret in response. When challenged, the host transmits a CHAP credential and CHAP secret to the storage array. The storage array looks for this credential and CHAP secret which stored in the host initiator's initiator group (IG) information in the ACLX database. Once a positive authentication occurs, the storage array sends an acceptance message to the host. However, if the storage array fails to find any record of the credential/secret pair, it sends a rejection message, and the link is closed.
Assumptions, restrictions and prerequisites
The host initiator IQN is required along with the credentials the host initiator will use to log into the storage array with. The same credentials should be used in a multi node system if connecting to the same array.
Enable one-way CHAP authentication for the iSCSI initiator on the storage array using
SYMCLI
. Template and example shown below. For the purpose of this setup, the credential/secret used would bemy_username/my_password
with iSCSI initiator ofiqn.1991-05.com.company.lcseb130
# symaccess -sid <SymmID> -iscsi <iscsi> \ {enable chap | disable chap | set chap} \ -cred <Credential> -secret <Secret> # symaccess -sid 128 \ -iscsi iqn.1991-05.com.company.lcseb130 \ set chap -cred my_username -secret my_password
Settings and configuration
Set the configuration in the PowerMax backend group in
cinder.conf
using the following parameters and restart cinder.Configuration options Value required for CHAP Required for CHAP use_chap_auth
True
Yes chap_username
my_username
Yes chap_password
my_password
Yes [POWERMAX_ISCSI] volume_driver = cinder.volume.drivers.dell_emc.powermax.iscsi.PowerMaxISCSIDriver volume_backend_name = POWERMAX_ISCSI san_ip = 10.10.10.10 san_login = my_u4v_username san_password = my_u4v_password powermax_srp = SRP_1 powermax_array = 000123456789 powermax_port_groups = [OS-ISCSI-PG] use_chap_auth = True chap_username = my_username chap_password = my_password
Usage
Using
SYMCLI
, enable CHAP authentication for a host initiator as described above, but do not setuse_chap_auth
,chap_username
orchap_password
incinder.conf
. Create a bootable volume.openstack volume create --size 1 \ --image <image_name> \ --type <volume_type> \ test
Boot instance named
test_server
using the volume created above:openstack server create --volume test \ --flavor m1.small \ --nic net-id=private \ test_server
Verify the volume operation succeeds but the boot instance fails as CHAP authentication fails.
Update
cinder.conf
withuse_chap_auth
set to true andchap_username
andchap_password
set with the correct credentials.Rerun
openstack server create
Verify that the boot instance operation ran correctly and the volume is accessible.
Verify that both the volume and boot instance operations ran successfully and the user is able to access the volume.
9. QoS (Quality of Service) support
Quality of service (QoS) has traditionally been associated with network bandwidth usage. Network administrators set limitations on certain networks in terms of bandwidth usage for clients. This enables them to provide a tiered level of service based on cost. The Nova/Cinder QoS offer similar functionality based on volume type setting limits on host storage bandwidth per service offering. Each volume type is tied to specific QoS attributes some of which are unique to each storage vendor. In the hypervisor, the QoS limits the following:
- Limit by throughput - Total bytes/sec, read bytes/sec, write bytes/sec
- Limit by IOPS - Total IOPS/sec, read IOPS/sec, write IOPS/sec
QoS enforcement in Cinder is done either at the hyper-visor (front-end), the storage subsystem (back-end), or both. This section focuses on QoS limits that are enforced by either the PowerMax backend and the hyper-visor front end interchangeably or just back end (Vendor Specific). The PowerMax driver offers support for Total bytes/sec limit in throughput and Total IOPS/sec limit of IOPS.
The PowerMax driver supports the following attributes that are front end/back end agnostic
total_iops_sec
- Maximum IOPs (in I/Os per second). Valid values range from 100 IO/Sec to 100000 IO/sec.total_bytes_sec
- Maximum bandwidth (throughput) in bytes per second. Valid values range from 1048576 bytes (1MB) to 104857600000 bytes (100,000MB)
The PowerMax driver offers the following attribute that is vendor
specific to the PowerMax and dependent on the
total_iops_sec
and/or total_bytes_sec
being
set.
Dynamic Distribution
- Enables/Disables dynamic distribution of host I/O limits. Possible values are:Always
- Enables full dynamic distribution mode. When enabled, the configured host I/O limits will be dynamically distributed across the configured ports, thereby allowing the limits on each individual port to adjust to fluctuating demand.OnFailure
- Enables port failure capability. When enabled, the fraction of configured host I/O limits available to a configured port will adjust based on the number of ports currently online.Never
- Disables this feature (Default).
USE CASE 1 - Default values
Prerequisites - PowerMax
- Host I/O Limit (MB/Sec) - No Limit
- Host I/O Limit (IO/Sec) - No Limit
- Set Dynamic Distribution - N/A
Key | Value |
---|---|
|
|
|
104857600 (100MB) |
|
Always |
Create QoS Specs with the prerequisite values above:
$ openstack volume qos create --consumer back-end \ --property total_iops_sec=500 \ --property total_bytes_sec=104857600 \ --property DistributionType=Always \ my_qos
Associate QoS specs with specified volume type:
$ openstack volume qos associate my_qos my_volume_type
Create volume with the volume type indicated above:
$ openstack volume create --size 1 --type my_volume_type my_volume
Outcome - PowerMax (storage group)
- Host I/O Limit (MB/Sec) -
100
- Host I/O Limit (IO/Sec) -
500
- Set Dynamic Distribution -
Always
Outcome - Block Storage (Cinder)
Volume is created against volume type and QoS is enforced with the parameters above.
USE CASE 2 - Pre-set limits
Prerequisites - PowerMax
- Host I/O Limit (MB/Sec) -
2000
- Host I/O Limit (IO/Sec) -
2000
- Set Dynamic Distribution -
Never
Key | Value |
---|---|
|
|
|
104857600 (100MB) |
|
Always |
Create QoS specifications with the prerequisite values above. The consumer in this use case is both for front-end and back-end:
$ openstack volume qos create --consumer back-end \ --property total_iops_sec=500 \ --property total_bytes_sec=104857600 \ --property DistributionType=Always \ my_qos
Associate QoS specifications with specified volume type:
$ openstack volume qos associate my_qos my_volume_type
Create volume with the volume type indicated above:
$ openstack volume create --size 1 --type my_volume_type my_volume
Attach the volume created in step 3 to an instance
$ openstack server add volume my_instance my_volume
Outcome - PowerMax (storage group)
- Host I/O Limit (MB/Sec) -
100
- Host I/O Limit (IO/Sec) -
500
- Set Dynamic Distribution -
Always
Outcome - Block Storage (Cinder)
Volume is created against volume type and QoS is enforced with the parameters above.
Outcome - Hypervisor (Nova)
Libvirt
includes an extra xml
flag within
the <disk>
section called iotune
that is
responsible for rate limitation. To confirm that, first get the
OS-EXT-SRV-ATTR:instance_name
value of the server instance,
for example instance-00000003
.
$ openstack server show <serverid>
+-------------------------------------+-----------------------------------------------------------------+
| Field | Value |
+-------------------------------------+-----------------------------------------------------------------+
| OS-DCF:diskConfig | AUTO |
| OS-EXT-AZ:availability_zone | nova |
| OS-EXT-SRV-ATTR:host | myhost |
| OS-EXT-SRV-ATTR:hypervisor_hostname | myhost |
| OS-EXT-SRV-ATTR:instance_name | instance-00000003 |
| OS-EXT-STS:power_state | Running |
| OS-EXT-STS:task_state | None |
| OS-EXT-STS:vm_state | active |
| OS-SRV-USG:launched_at | 2017-11-02T08:15:42.000000 |
| OS-SRV-USG:terminated_at | None |
| accessIPv4 | |
| accessIPv6 | |
| addresses | private=fd21:99c2:73f3:0:f816:3eff:febe:30ed, 10.0.0.3 |
| config_drive | |
| created | 2017-11-02T08:15:34Z |
| flavor | m1.tiny (1) |
| hostId | e7b8312581f9fbb8508587d45c0b6fb4dc86102c632ed1f3a6a49d42 |
| id | 0ef0ff4c-dbda-4dc7-b8ed-45d2fc2f31db |
| image | cirros-0.3.5-x86_64-disk (b7c220f5-2408-4296-9e58-fc5a41cb7e9d) |
| key_name | myhostname |
| name | myhosthame |
| progress | 0 |
| project_id | bae4b97a0d8b42c28a5add483981e5db |
| properties | |
| security_groups | name='default' |
| status | ACTIVE |
| updated | 2017-11-02T08:15:42Z |
| user_id | 7bccf456740546799a7e20457f13c38b |
| volumes_attached | |
+-------------------------------------+-----------------------------------------------------------------+
We then run the following command using the
OS-EXT-SRV-ATTR:instance_name
retrieved above.
$ virsh dumpxml instance-00000003 | grep -1 "total_bytes_sec\|total_iops_sec"
The output of the command contains the XML below. It is found between
the <disk>
start and end tag.
iotune>
<total_bytes_sec>104857600</total_bytes_sec>
<total_iops_sec>500</total_iops_sec>
<iotune> </
USE CASE 3 - Pre-set limits
Prerequisites - PowerMax
- Host I/O Limit (MB/Sec) -
100
- Host I/O Limit (IO/Sec) -
500
- Set Dynamic Distribution -
Always
Key | Value |
---|---|
|
|
|
104857600 (100MB) |
|
OnFailure |
Create QoS specifications with the prerequisite values above:
$ openstack volume qos create --consumer back-end \ --property total_iops_sec=500 \ --property total_bytes_sec=104857600 \ --property DistributionType=OnFailure \ my_qos
Associate QoS specifications with specified volume type:
$ openstack volume qos associate my_qos my_volume_type
Create volume with the volume type indicated above:
$ openstack volume create --size 1 --type my_volume_type my_volume
Outcome - PowerMax (storage group)
- Host I/O Limit (MB/Sec) -
100
- Host I/O Limit (IO/Sec) -
500
- Set Dynamic Distribution -
OnFailure
Outcome - Block Storage (Cinder)
Volume is created against volume type and QOS is enforced with the parameters above.
USE CASE 4 - Default values
Prerequisites - PowerMax
- Host I/O Limit (MB/Sec) -
No Limit
- Host I/O Limit (IO/Sec) -
No Limit
- Set Dynamic Distribution -
N/A
Key | Value |
---|---|
|
Always |
Create QoS specifications with the prerequisite values above:
$ openstack volume qos create --consumer back-end \ --property DistributionType=Always \ my_qos
Associate QoS specifications with specified volume type:
$ openstack volume qos associate my_qos my_volume_type
Create volume with the volume type indicated above:
$ openstack volume create --size 1 --type my_volume_type my_volume
Outcome - PowerMax (storage group)
- Host I/O Limit (MB/Sec) -
No Limit
- Host I/O Limit (IO/Sec) -
No Limit
- Set Dynamic Distribution -
N/A
Outcome - Block Storage (Cinder)
Volume is created against volume type and there is no QoS change.
10. Multi-pathing support
- Install
open-iscsi
on all nodes on your system if on an iSCSI setup. - Do not install EMC PowerPath as they cannot co-exist with native multi-path software
- Multi-path tools must be installed on all Nova compute nodes
On Ubuntu:
# apt-get install multipath-tools #multipath modules
# apt-get install sysfsutils sg3-utils #file system utilities
# apt-get install scsitools #SCSI tools
On openSUSE and SUSE Linux Enterprise Server:
# zipper install multipath-tools #multipath modules
# zipper install sysfsutils sg3-utils #file system utilities
# zipper install scsitools #SCSI tools
On Red Hat Enterprise Linux and CentOS:
# yum install iscsi-initiator-utils #ensure iSCSI is installed
# yum install device-mapper-multipath #multipath modules
# yum install sysfsutils sg3-utils #file system utilities
Multipath configuration file
The multi-path configuration file may be edited for better management
and performance. Log in as a privileged user and make the following
changes to /etc/multipath.conf
on the Compute (Nova)
node(s).
devices {
# Device attributed for EMC PowerMax
device {
vendor "EMC"
product "SYMMETRIX"
path_grouping_policy multibus
getuid_callout "/lib/udev/scsi_id --page=pre-spc3-83 --whitelisted --device=/dev/%n"
path_selector "round-robin 0"
path_checker tur
features "0"
hardware_handler "0"
prio const
rr_weight uniform
no_path_retry 6
rr_min_io 1000
rr_min_io_rq 1
}
}
You may need to reboot the host after installing the MPIO tools or restart iSCSI and multi-path services.
On Ubuntu iSCSI:
# service open-iscsi restart
# service multipath-tools restart
On Ubuntu FC
# service multipath-tools restart
On openSUSE, SUSE Linux Enterprise Server, Red Hat Enterprise Linux, and CentOS iSCSI:
# systemctl restart open-iscsi
# systemctl restart multipath-tools
On openSUSE, SUSE Linux Enterprise Server, Red Hat Enterprise Linux, and CentOS FC:
# systemctl restart multipath-tools
$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 1G 0 disk
..360000970000196701868533030303235 (dm-6) 252:6 0 1G 0 mpath
sdb 8:16 0 1G 0 disk
..360000970000196701868533030303235 (dm-6) 252:6 0 1G 0 mpath
vda 253:0 0 1T 0 disk
OpenStack configurations
On Compute (Nova) node, add the following flag in the
[libvirt]
section of nova.conf
and
nova-cpu.conf
:
volume_use_multipath = True
On Cinder controller node, multi-path for image transfer can be
enabled in cinder.conf
for each backend section or in
[backend_defaults]
section as a common configuration for
all backends.
use_multipath_for_image_xfer = True
Restart nova-compute
and cinder-volume
services after the change.
Verify you have multiple initiators available on the compute node for I/O
Create a 3GB PowerMax volume.
Create an instance from image out of native LVM storage or from PowerMax storage, for example, from a bootable volume
Attach the 3GB volume to the new instance:
# multipath -ll mpath102 (360000970000196700531533030383039) dm-3 EMC,SYMMETRIX size=3G features='1 queue_if_no_path' hwhandler='0' wp=rw '-+- policy='round-robin 0' prio=1 status=active 33:0:0:1 sdb 8:16 active ready running '- 34:0:0:1 sdc 8:32 active ready running
Use the
lsblk
command to see the multi-path device:# lsblk NAME MAJ:MIN RM SIZE RO TYPE sdb 8:0 0 3G 0 disk ..360000970000196700531533030383039 (dm-6) 252:6 0 3G 0 mpath sdc 8:16 0 3G 0 disk ..360000970000196700531533030383039 (dm-6) 252:6 0 3G 0 mpath vda
11. All Flash compression support
On an All Flash array, the creation of any storage group has a
compressed attribute by default. Setting compression on a storage group
does not mean that all the devices will be immediately compressed. It
means that for all incoming writes compression will be considered.
Setting compression off
on a storage group does not mean
that all the devices will be uncompressed. It means all the writes to
compressed tracks will make these tracks uncompressed.
Note
This feature is only applicable for All Flash arrays, 250F, 450F, 850F and 950F and PowerMax 2000 and 8000. It was first introduced Solutions Enabler 8.3.0.11 or later and is enabled by default when associated with a Service Level. This means volumes added to any newly created storage groups will be compressed.
Use case 1 - Compression disabled create, attach, detach, and delete volume
- Create a new volume type called
POWERMAX_COMPRESSION_DISABLED
. - Set an extra spec
volume_backend_name
. - Set a new extra spec
storagetype:disablecompression = True
. - Create a new volume.
- Check in Unisphere or SYMCLI to see if the volume exists in storage
group
OS-<srp>-<servicelevel>-<workload>-CD-SG
, and compression is disabled on that storage group. - Attach the volume to an instance. Check in Unisphere or SYMCLI to
see if the volume exists in storage group
OS-<shorthostname>-<srp>-<servicelevel/workload>-<portgroup>-CD
, and compression is disabled on that storage group. - Detach volume from instance. Check in Unisphere or symcli to see if
the volume exists in storage group
OS-<srp>-<servicelevel>-<workload>-CD-SG
, and compression is disabled on that storage group. - Delete the volume. If this was the last volume in the
OS-<srp>-<servicelevel>-<workload>-CD-SG
storage group, it should also be deleted.
Use case 2 - Retype from compression disabled to compression enabled
- Repeat steps 1-4 of Use case 1.
- Create a new volume type. For example
POWERMAX_COMPRESSION_ENABLED
. - Set extra spec
volume_backend_name
as before. - Set the new extra spec's compression as
storagetype:disablecompression = False
or DO NOT set this extra spec. - Retype from volume type
POWERMAX_COMPRESSION_DISABLED
toPOWERMAX_COMPRESSION_ENABLED
. - Check in Unisphere or symcli to see if the volume exists in storage
group
OS-<srp>-<servicelevel>-<workload>-SG
, and compression is enabled on that storage group.
Note
If extra spec storagetype:disablecompression
is set on a
VMAX-Hybrid, it is ignored because
compression is not an available feature on a VMAX-Hybrid.
12. Oversubscription support
Please refer to the official OpenStack over-subscription documentation for further information on using over-subscription with PowerMax.
13. Live migration support
Non-live migration (sometimes referred to simply as 'migration'). The instance is shut down for a period of time to be moved to another hyper-visor. In this case, the instance recognizes that it was rebooted.
Live migration (or 'true live migration'). Almost no instance downtime. Useful when the instances must be kept running during the migration. The different types of live migration are:
- Shared storage-based live migration Both hyper-visors have access to shared storage.
- Block live migration No shared storage is required. Incompatible with read-only devices such as CD-ROMs and Configuration Drive (config_drive).
- Volume-backed live migration Instances are backed by volumes rather than ephemeral disk. For PowerMax volume-backed live migration, shared storage is required.
The PowerMax driver supports shared volume-backed live migration.
Architecture
In PowerMax, A volume cannot belong to two or more FAST storage groups at the same time. To get around this limitation we leverage both cascaded storage groups and a temporary non-FAST storage group.
A volume can remain 'live' if moved between masking views that have the same initiator group and port groups which preserves the host path.
During live migration, the following steps are performed by the PowerMax driver on the volume:
- Within the originating masking view, the volume is moved from the FAST storage group to the non-FAST storage group within the parent storage group.
- The volume is added to the FAST storage group within the destination parent storage group of the destination masking view. At this point the volume belongs to two storage groups.
- One of two things happen:
- If the connection to the destination instance is successful, the volume is removed from the non-FAST storage group in the originating masking view, deleting the storage group if it contains no other volumes.
- If the connection to the destination instance fails, the volume is removed from the destination storage group, deleting the storage group, if empty. The volume is reverted back to the original storage group.
Live migration configuration
Please refer to the official OpenStack documentation on configuring migrations and live migration usage for more information.
Note
OpenStack Oslo uses an open standard for messaging middleware known
as AMQP
. This messaging middleware (the RPC messaging
system) enables the OpenStack services that run on multiple servers to
talk to each other. By default, the RPC messaging client is set to
timeout after 60 seconds, meaning if any operation you perform takes
longer than 60 seconds to complete the operation will timeout and fail
with the ERROR message
Messaging Timeout: Timed out waiting for a reply to message ID
[message_id]
If this occurs, increase the rpc_response_timeout
flag
value in cinder.conf
and nova.conf
on all
Cinder and Nova nodes and restart the services.
What to change this value to will depend entirely on your own environment, you might only need to increase it slightly, or if your environment is under heavy network load it could need a bit more time than normal. Fine tuning is required here, change the value and run intensive operations to determine if your timeout value matches your environment requirements.
At a minimum please set rpc_response_timeout
to
240
, but this will need to be raised if high concurrency is
a factor. This should be sufficient for all Cinder backup commands
also.
System configuration
NOVA-INST-DIR/instances/
(for example,
/opt/stack/data/nova/instances
) has to be mounted by shared
storage. Ensure that NOVA-INST-DIR
(set with
state_path
in the nova.conf
file) is the same
on all hosts.
Configure your DNS or
/etc/hosts
and ensure it is consistent across all hosts. Make sure that the three hosts can perform name resolution with each other. As a test, use the ping command to ping each host from one another.$ ping HostA $ ping HostB $ ping HostC
Export
NOVA-INST-DIR/instances
fromHostA
, and ensure it is readable and writable by the Compute user onHostB
andHostC
. Please refer to the relevant OS documentation for further details, for example Ubuntu NFS DocumentationOn all compute nodes, enable the
execute/search
bit on your shared directory to allowqemu
to be able to use the images within the directories. On all hosts, run the following command:$ chmod o+x NOVA-INST-DIR/instances
Note
If migrating from compute to controller, make sure to run step two above on the controller node to export the instance directory.
Use case
For our use case shown below, we have three hosts with host names
HostA
, HostB
and HostC
.
HostA
is the controller node while HostB
and
HostC
are the compute nodes. The following were also used
in live migration.
- 2GB bootable volume using the CirrOS image.
- Instance created using the 2GB volume above with a flavor
m1.small
using 2048 RAM, 20GB of Disk and 1 VCPU.
Create a bootable volume.
$ openstack volume create --size 2 \ --image cirros-0.3.5-x86_64-disk \ --volume_lm_1
Launch an instance using the volume created above on
HostB
.$ openstack server create --volume volume_lm_1 \ --flavor m1.small \ --nic net-id=private \ --security-group default \ --availability-zone nova:HostB \ server_lm_1
Confirm on
HostB
has the instance created by running:$ openstack server show server_lm_1 | grep "hypervisor_hostname\|instance_name" | OS-EXT-SRV-ATTR:hypervisor_hostname | HostB | OS-EXT-SRV-ATTR:instance_name | instance-00000006
Confirm, through
virsh
using the instance_name returned in step 3 (instance-00000006
), onHostB
that the instance is created using:$ virsh list --all Id Name State -------------------------------- 1 instance-00000006 Running
Migrate the instance from
HostB
toHostA
with:$ openstack server migrate --os-compute-api-version 2.30 \ --live-migration --host HostA \ server_lm_1
Run the command on step 3 above when the instance is back in available status. The hypervisor should be on Host A.
Run the command on Step 4 on Host A to confirm that the instance is created through
virsh
.
14. Multi-attach support
PowerMax cinder driver supports the ability to attach a volume to multiple hosts/servers simultaneously. Please see the official OpenStack multi-attach documentation for configuration information.
Multi-attach architecture
In PowerMax, a volume cannot belong to two or more FAST storage groups at the same time. This can cause issues when we are attaching a volume to multiple instances on different hosts. To get around this limitation, we leverage both cascaded storage groups and non-FAST storage groups (i.e. a storage group with no service level, workload, or SRP specified).
Note
If no service level is assigned to the volume type, no extra work on the backend is required – the volume is attached to and detached from each host as normal.
Example use case
Volume Multi-attach-Vol-1
(with a multi-attach capable
volume type, and associated with a Diamond Service Level) is attached to
Instance Multi-attach-Instance-A
on HostA. We then issue
the command to attach Multi-attach-Vol-1
to
Multi-attach-Instance-B
on HostB:
- In the
HostA
masking view, the volume is moved from the FAST managed storage group to the non-FAST managed storage group within the parent storage group. - The volume is attached as normal on
HostB
– i.e., it is added to a FAST managed storage group within the parent storage group of theHostB
masking view. The volume now belongs to two masking views, and is exposed to bothHostA
andHostB
.
We then decide to detach the volume from
Multi-attach-Instance-B
on HostB
:
- The volume is detached as normal from
HostB
– i.e., it is removed from the FAST managed storage group within the parent storage group of theHostB
masking view – this includes cleanup of the associated elements if required. The volume now belongs to one masking view, and is no longer exposed toHostB
. - In the
HostA
masking view, the volume is returned to the FAST managed storage group from the non-FAST managed storage group within the parent storage group. The non-FAST managed storage group is cleaned up, if required.
15. Volume encryption support
Encryption is supported through the use of OpenStack Barbican. Only front-end encryption is supported, back-end encryption is handled at the hardware level with Data at Rest Encryption (D@RE).
For further information on OpenStack Barbican including setup and configuration please refer to the following official Barbican documentation.
16. Volume metadata
Volume metadata is returned to the user in both the Cinder Volume logs and with volumes and snapshots created in Cinder via the UI or CLI.
16.1 Volume metadata in logs
If debug is enabled in the default section of
cinder.conf
, PowerMax Cinder driver will log additional
volume information in the Cinder volume log, on each successful
operation. The facilitates bridging the gap between OpenStack and the
Array by tracing and describing the volume from a VMAX/ PowerMax view
point.
+------------------------------------+---------------------------------------------------------+
| Key | Value |
+------------------------------------+---------------------------------------------------------+
| service_level | Gold |
| is_compression_disabled | no |
| powermax_cinder_driver_version | 3.2.0 |
| identifier_name | OS-819470ab-a6d4-49cc-b4db-6f85e82822b7 |
| openstack_release | 13.0.0.0b3.dev3 |
| volume_id | 819470ab-a6d4-49cc-b4db-6f85e82822b7 |
| storage_model | PowerMax_8000 |
| successful_operation | delete |
| default_sg_name | OS-DEFAULT_SRP-Gold-NONE-SG |
| device_id | 01C03 |
| unisphere_for_powermax_version | V9.0.0.9 |
| workload | NONE |
| openstack_version | 13.0.0 |
| volume_updated_time | 2018-08-03 03:13:53 |
| platform | Linux-4.4.0-127-generic-x86_64-with-Ubuntu-16.04-xenial |
| python_version | 2.7.12 |
| volume_size | 20 |
| srp | DEFAULT_SRP |
| openstack_name | 90_Test_Vol56 |
| storage_firmware_version | 5978.143.144 |
| serial_number | 000123456789 |
+------------------------------------+---------------------------------------------------------+
16.2 Metadata in the UI and CLI
By default metadata will be set on all volume and snapshot objects created in Cinder. This information represents the state of the object on the backend PowerMax and will change when volume attributes are changed by performing actions on them such as re-type or attaching to an instance.
demo@openstack-controller:~$ cinder show powermax-volume
+--------------------------------+------------------------------------------------------------+
| Property | Value |
+--------------------------------+------------------------------------------------------------+
| metadata | ArrayID : 000123456789 |
| | ArrayModel : PowerMax_8000 |
| | CompressionDisabled : False |
| | Configuration : TDEV |
| | DeviceID : 0012F |
| | DeviceLabel : OS-d87edb98-60fd-49dd-bb0f-cc388cf6f3f4 |
| | Emulation : FBA |
| | ReplicationEnabled : False |
| | ServiceLevel : Diamond |
| | Workload : None |
| name | powermax-volume |
+--------------------------------+------------------------------------------------------------+
17. Unisphere High Availability (HA) support
This feature facilitates high availability of Unisphere for PowerMax
servers, allowing for one or more backup unisphere instances in the
event of a loss in connection to the primary Unisphere instance. The
PowerMax driver will cycle through the list of failover instances,
trying each until a successful connection is made. The ordering is first
in, first out (FIFO), so the first u4p_failover_target
specified in cinder.conf
will be the first selected, the
second u4p_failover_target
in cinder.conf
will
be the second selected, and so on until all failover targets are
exhausted.
Requirements
- All required instances of Unisphere for PowerMax are set up and configured for the array(s)
- Array(s) are locally registered with the instance of Unisphere that
will be used as a failover instance. There are two failover types, local
and remote:
- Local failover - Primary Unisphere is unreachable, failover to secondary local instance of Unisphere to resume normal operations at primary site.
- Remote failover - Complete loss of primary site so primary instance of Unisphere is unreachable, failover to secondary instance of Unisphere at remote site to resume operations with the R2 array.
Note
Replication must be configured in advance for remote failover to work
successfully. Human intervention will also be required to failover from
R1 array to R2 array in Cinder using cinder failover-host
command (see Volume replication
support for replication setup details).
Note
The remote target array must be registered as local to the remote instance of Unisphere
Configuration
The following configuration changes need to be made in
cinder.conf
under the PowerMax backend stanza in order to
support the failover to secondary Unisphere. Cinder services will need
to be restarted for changes to take effect.
[POWERMAX_1]
...
u4p_failover_timeout = 30
u4p_failover_retries = 3
u4p_failover_backoff_factor = 1
u4p_failover_autofailback = True
u4p_failover_target = san_ip:10.10.10.12,
san_api_port: 8443,
san_login:my_username,
san_password:my_password,
driver_ssl_cert_verify: False,
u4p_failover_target = san_ip:10.10.10.13,
san_api_port: 8443
san_login:my_username,
san_password:my_password,
driver_ssl_cert_verify: True,
driver_ssl_cert_path: /path/to/my_unisphere_host.pem
Note
u4p_failover_target
key value pairs will need to be on
the same line (separated by commas) in cinder.conf
. They
are displayed on separated lines above for readability.
Note
To add more than one Unisphere failover target create additional
u4p_failover_target
details for the Unisphere instance.
These will be cycled through in a first-in, first-out (FIFO) basis, the
first failover target in cinder.conf
will be the first
backup instance of Unisphere used by the PowerMax driver.
18. Rapid TDEV deallocation
The PowerMax driver can now leverage the enhanced volume delete feature-set made available in the PowerMax 5978 Foxtail uCode release. These enhancements allow volume deallocation & deletion to be combined into a single call. Previously, volume deallocation & deletion were split into separate tasks; now a single REST call is dispatched and a response code on the projected outcome of their request is issued rapidly allowing other task execution to proceed without the delay. No additional configuration is necessary, the system will automatically determine when to use either the rapid or legacy compliant volume deletion sequence based on the connected PowerMax array’s metadata.
19. PowerMax online (in-use) device expansion
Assumptions, restrictions and prerequisites
- ODE in the context of this document refers to extending a volume where it is in-use, that is, attached to an instance.
- The
allow_extend
is only applicable on VMAX-Hybrid arrays or All Flash arrays with HyperMax OS. If included elsewhere, it is ignored. - Where one array is a lower uCode than the other, the environment is limited to functionality of that of the lowest uCode level, i.e. if R1 is 5978.444 and R2 is 5978.221, expanding a metro volume is not supported, both R1 and R2 need to be on 5978.444 uCode at a minimum.
20. PowerMax array and storage group tagging
Unisphere for PowerMax 9.1 and later supports tagging of storage groups and arrays, so the user can give their own 'tag' for ease of searching and/or grouping.
Assumptions, restrictions and prerequisites
- The storage group tag(s) is associated with a volume type extra spec
key
storagetype:storagegrouptags
. - The array tag is associated with the backend stanza using key
powermax_array_tag_list
. It expects a list of one or more comma separated values, for examplepowermax_array_tag_list=[value1,value2, value3]
- They can be one or more values in a comma separated list.
- There is a 64 characters limit of letters, numbers, - and _.
- 8 tags are allowed per storage group and array.
- Tags cannot be modified once a volume has been created with that volume type. This is an OpenStack constraint.
- Tags can be modified on the backend stanza, but none will ever be removed, only added.
- There is no restriction on creating or deleting tags of OpenStack storage groups or arrays outside of OpenStack, for example Unisphere for PowerMax UI. The max number of 8 tags will apply however, as this is a Unisphere for PowerMax limit.
Set a storage group tag on a volume type:
$ openstack volume type set --property storagetype:storagegrouptags=myStorageGroupTag1,myStorageGroupTag2
Set an array tag on the PowerMax backend:
[POWERMAX_ISCSI]
volume_driver = cinder.volume.drivers.dell_emc.powermax.iscsi.PowerMaxISCSIDriver
volume_backend_name = POWERMAX_ISCSI
san_ip = 10.10.10.10
san_login = my_u4v_username
san_password = my_u4v_password
powermax_srp = SRP_1
powermax_array = 000123456789
powermax_port_groups = [OS-ISCSI-PG]
powermax_array_tag_list = [openstack1, openstack2]
21. PowerMax short host name and port group name override
This functionality allows the user to customize the short host name and port group name that are contained in the PowerMax driver storage groups and masking views names. For current functionality please refer to PowerMax naming conventions for more details.
As the storage group name and masking view name are limited to 64 characters the short host name needs to be truncated to 16 characters or less and port group needs to be truncated to 12 characters or less. This functionality offers a little bit more flexibility to determine how these truncated components should look.
Note
Once the port group and short host name have been overridden with any
new format, it is not possible to return to the default format or change
to another format if any volumes are in an attached state. This is
because there is no way to determine the overridden format once
powermax_short_host_name_template` or
powermax_port_group_name_template``
have been removed or changed.
Assumptions, restrictions, and prerequisites
- Backward compatibility with old format is preserved.
cinder.conf
will have 2 new configuration options,short_host_name_template
andport_group_name_template
.- If a storage group, masking view or initiator group in the old naming convention already exists, this remains and any new attaches will use the new naming convention where the label for the short host name and/or port group has been customized by the user.
- Only the short host name and port group name components can be renamed within the storage group, initiator group and masking view names.
- If the
powermax_short_host_name_template
andpowermax_port_group_name_template
do not adhere to the rules, then the operation will fail early and gracefully with a clear description as to the problem. - The templates cannot be changed once volumes have been attached using the new configuration.
- If only one of the templates are configured, then the other will revert to the default option.
- The UUID is generated from the MD5 hash of the full short host name and port group name
- If
userdef
is used, the onus is on the user to make sure it will be unique among all short host names (controller and compute nodes) and unique among port groups.
powermax_short_host_name_template | Description | Rule |
---|---|---|
shortHostName | This is the default option | Existing functionality, if over 16 characters then see PowerMax naming conventions, otherwise short host name |
shortHostName[:x])uuid[:x] e.g. shortHostName[:6]uuid[:9] | First x characters of the short host name and x uuid characters created from md5 hash of short host name | Must be less than 16 characters |
shortHostName[:x]userdef e.g. shortHostName[:6]-testHost | First x characters of the short host name and a user defined x char name. NB - the responsibility is on the user for uniqueness | Must be less than 16 characters |
shortHostName[-x:]uuid[:x] e.g. shortHostName[-6:]uuid[:9] | Last x characters of the short host name and x uuid characters created from md5 hash of short host name | Must be less than 16 characters |
shortHostName[-x:]userdef e.g. shortHostName[-6:]-testHost | Last x characters of the short host name and a user defined x char name. NB - the responsibility is on the user for uniqueness | Must be less than 16 characters |
powermax_port_group_name_template | Description | Rule |
---|---|---|
portGroupName | This is the default option | Existing functionality, if over 12 characters then see PowerMax naming conventions, otherwise port group name |
portGroupName[:x])uuid[:x] e.g. portGroupName[:6]uuid[:5] | First x characters of the port group name and x uuid characters created from md5 hash of port group name | Must be less than 12 characters |
portGroupName[:x]userdef e.g. portGroupName[:6]-test | First x characters of the port group name and a user defined x char name. NB - the responsibility is on the user for uniqueness | Must be less than 12 characters |
portGroupName[-x:]uuid[:x] e.g. portGroupName[-6:]uuid[:5] | Last x characters of the port group name and x uuid characters created from md5 hash of port group name | Must be less than 12 characters |
portGroupName[-x:]userdef e.g. portGroupName[-6:]-test | Last x characters of the port group name and a user defined x char name. NB - the responsibility is on the user for uniqueness | Must be less than 12 characters |
21. Snap ids replacing generations
Snap ids were introduced to the PowerMax in microcde 5978.669.669 and Unisphere for PowerMax 9.2. Generations existed previously and could cause stale data if deleted out of sequence, even though we locked against this occurence. This happened when the newer generation(s) inherited its deleted predecessors generation number. So in a series of 0, 1, 2 and 3 generations, if generation 1 gets deleted, generation 2 now becomes generation 1 and generation 3 becomes generation 2 and so on down the line. Snap ids are unique to each snapVX and will not change once assigned at creation so out of sequence deletions are no longer an issue. Generations will remain for arrays with microcode less than 5978.669.669.
Cinder supported operations
Volume replication support
Note
A mix of RDF1+TDEV
and TDEV
volumes should
not exist in the same storage group. This can happen on a cleanup
operation after breaking the pair and a 'TDEV' remains in the storage
group on either the local or remote array. If this happens, remove the
volume from the storage group so that further replicated volume
operations can continue. For example, Remove TDEV
from
OS-[SRP]-[SL]-[WL]-RA-SG
.
Note
Replication storage groups should exist on both local and remote
array but never on just one. For example, if OS-[SRP]-[SL]-[WL]-RA-SG
exists on local array A it must also exist on remote array B. If this
condition does not hold, further replication operations will fail. This
applies to management storage groups in the case of
Asynchronous
and Metro
modes also. See my-table
.
Note
The number of devices in replication storage groups in both local and
remote arrays should be same. This also applies to management storage
groups in Asynchronous
and Metro
modes. See
my-table
.
Configure a single replication target
Configure an SRDF group between the chosen source and target arrays for the PowerMax Cinder driver to use. The source array must correspond with the
powermax_array
entry incinder.conf
.Select both the director and the ports for the SRDF emulation to use on both sides. Bear in mind that network topology is important when choosing director endpoints. Supported modes are
Synchronous
,Asynchronous
, andMetro
.Note
If the source and target arrays are not managed by the same Unisphere server (that is, the target array is remotely connected to server -for example, if you are using embedded management), in the event of a full disaster scenario (i.e. the primary array is completely lost and all connectivity to it is gone), the Unisphere server would no longer be able to contact the target array. In this scenario, the volumes would be automatically failed over to the target array, but administrator intervention would be required to either; configure the target (remote) array as local to the current Unisphere server (if it is a stand-alone server), or enter the details of a second Unisphere server to the
cinder.conf
, which is locally connected to the target array (for example, the embedded management Unisphere server of the target array), and restart the Cinder volume service.Note
If you are setting up an SRDF/Metro configuration, it is recommended that you configure a Witness or vWitness for bias management. Please see the SRDF Metro Overview & Best Practices guide for more information.
Note
The PowerMax Cinder drivers do not support Cascaded SRDF.
Note
The transmit idle functionality must be disabled on the R2 array for Asynchronous rdf groups. If this is not disabled it will prevent failover promotion in the event of access to the R1 array being lost.
# symrdf -sid <sid> -rdfg <rdfg> set rdfa -transmit_idle off
Note
When creating RDF enabled volumes, if there are existing volumes in the target storage group, all rdf pairs related to that storage group must have the same rdf state i.e. rdf pair states must be consistent across all volumes in a storage group when attempting to create a new replication enabled volume. If mixed rdf pair states are found during a volume creation attempt, an error will be raised by the rdf state validation checks. In this event, please wait until all volumes in the storage group have reached a consistent state.
Enable replication in
/etc/cinder/cinder.conf
. To enable the replication functionality in PowerMax Cinder driver, it is necessary to create a replication volume-type. The corresponding back-end stanza incinder.conf
for this volume-type must then include areplication_device
parameter. This parameter defines a single replication target array and takes the form of a list of key value pairs.enabled_backends = POWERMAX_FC_REPLICATION [POWERMAX_FC_REPLICATION] volume_driver = cinder.volume.drivers.dell_emc.powermax.fc.PowerMaxFCDriver san_ip = 10.10.10.10 san_login = my_u4v_username san_password = my_u4v_password powermax_srp = SRP_1 powermax_array = 000123456789 powermax_port_groups = [OS-FC-PG] volume_backend_name = POWERMAX_FC_REPLICATION replication_device = target_device_id:000197811111, remote_port_group:os-failover-pg, remote_pool:SRP_1, rdf_group_label: 28_11_07, mode:Metro, metro_use_bias:False, sync_interval:3, sync_retries:200
Note
replication_device
key value pairs will need to be on the same line (separated by commas) incinder.conf
. They are displayed here on separate lines above for improved readability.target_device_id
The unique PowerMax array serial number of the target array. For full failover functionality, the source and target PowerMax arrays must be discovered and managed by the same U4V server.remote_port_group
The name of a PowerMax port group that has been pre-configured to expose volumes managed by this backend in the event of a failover. Make sure that this port group contains either all FC or all iSCSI port groups (for a given back end), as appropriate for the configured driver (iSCSI or FC).remote_pool
The unique pool name for the given target array.rdf_group_label
The name of a PowerMax SRDF group that has been pre-configured between the source and target arrays.mode
The SRDF replication mode. Options areSynchronous
,Asynchronous
, andMetro
. This defaults toSynchronous
if not set.metro_use_bias
Flag to indicate if 'bias' protection should be used instead of Witness. This defaults to False.sync_interval
How long in seconds to wait between intervals for SRDF sync checks during Cinder PowerMax SRDF operations. Default is 3 seconds.sync_retries
How many times to retry RDF sync checks during Cinder PowerMax SRDF operations. Default is 200 retries.allow_extend
Only applicable to VMAX-Hybrid arrays or All Flash arrays running HyperMax OS (5977). It is a flag for allowing the extension of replicated volumes. To extend a volume in an SRDF relationship, this relationship must first be broken, the R1 device extended, and a new device pair established. If not explicitly set, this flag defaults toFalse
.Note
As the SRDF link must be severed, due caution should be exercised when performing this operation. If absolutely necessary, only one source and target pair should be extended at a time (only only applicable to VMAX-Hybrid arrays or All Flash arrays with HyperMax OS).
Create a
replication-enabled
volume type. Once thereplication_device
parameter has been entered in the PowerMax backend entry in thecinder.conf
, a corresponding volume type needs to be createdreplication_enabled
property set. See above Create volume types for details.# openstack volume type set --property replication_enabled="<is> True" \ POWERMAX_FC_REPLICATION
Note
Service Level and Workload: An attempt will be made to create a storage group on the target array with the same service level and workload combination as the primary. However, if this combination is unavailable on the target (for example, in a situation where the source array is a VMAX-Hybrid, the target array is an All Flash, and an All Flash incompatible service level like Bronze is configured), no service level will be applied.
Configure multiple replication targets
Setting multiple replication devices in cinder.conf allows the use of
all the supported replication modes simultaneously. Up to three
replication devices can be set, one for each of the replication modes
available. An additional volume type extra spec
(storagetype:replication_device_backend_id
) is then used to
determine which replication device should be utilized when attempting to
perform an operation on a volume which is replication enabled. All
details, guidelines and recommendations set out in the Configure a single
replication target section also apply in a multiple replication
device scenario.
- Multiple replication targets limitations and restrictions:
-
- There can only be one of each replication mode present across all of
the replication devices set in
cinder.conf
. - Details for
target_device_id
,remote_port_group
andremote_pool
should be identical across replication devices. - The
backend_id
andrdf_group_label
values must be unique across all replication devices.
- There can only be one of each replication mode present across all of
the replication devices set in
- Adding additional
replication_device
to cinder.conf: -
- Open
cinder.conf
for editing - If a replication device is already present, add the
backend_id
key with a value ofbackend_id_legacy_rep
. If this key is already defined, it's value must be updated tobackend_id_legacy_rep
. - Add the additional replication devices to the backend stanza. Any
additional replication devices must have a
backend_id
key set. The value of these mustnot
bebackend_id_legacy_rep
.
- Open
Example existing backend stanza pre-multiple replication:
enabled_backends = POWERMAX_FC_REPLICATION
[POWERMAX_FC_REPLICATION]
volume_driver = cinder.volume.drivers.dell_emc.powermax.fc.PowerMaxFCDriver
san_ip = 10.10.10.10
san_login = my_u4v_username
san_password = my_u4v_password
powermax_srp = SRP_1
powermax_array = 000123456789
powermax_port_groups = [OS-FC-PG]
volume_backend_name = POWERMAX_FC_REPLICATION
replication_device = backend_id:id,
target_device_id:000197811111,
remote_port_group:os-failover-pg,
remote_pool:SRP_1,
rdf_group_label: 28_11_07,
mode:Metro,
metro_use_bias:False,
sync_interval:3,
sync_retries:200
Example updated backend stanza:
enabled_backends = POWERMAX_FC_REPLICATION
[POWERMAX_FC_REPLICATION]
volume_driver = cinder.volume.drivers.dell_emc.powermax.fc.PowerMaxFCDriver
san_ip = 10.10.10.10
san_login = my_u4v_username
san_password = my_u4v_password
powermax_srp = SRP_1
powermax_array = 000123456789
powermax_port_groups = [OS-FC-PG]
volume_backend_name = POWERMAX_FC_REPLICATION
replication_device = backend_id:backend_id_legacy_rep
target_device_id:000197811111,
remote_port_group:os-failover-pg,
remote_pool:SRP_1,
rdf_group_label: 28_11_07,
mode:Metro,
metro_use_bias:False,
sync_interval:3,
sync_retries:200
replication_device = backend_id:sync-rep-id
target_device_id:000197811111,
remote_port_group:os-failover-pg,
remote_pool:SRP_1,
rdf_group_label: 29_12_08,
mode:Synchronous,
sync_interval:3,
sync_retries:200
replication_device = backend_id:async-rep-id
target_device_id:000197811111,
remote_port_group:os-failover-pg,
remote_pool:SRP_1,
rdf_group_label: 30_13_09,
mode:Asynchronous,
sync_interval:3,
sync_retries:200
Note
For environments without existing replication devices. The
backend_id
values can be set to any value for all
replication devices. The backend_id_legacy_rep
value is
only needed when updating a legacy system with an existing replication
device to use multiple replication devices.
The additional replication devices defined in
cinder.conf
will be detected after restarting the cinder
volume service.
To specify which replication_device
a volume type should
use an additional property named
storagetype:replication_device_backend_id
must be added to
the extra specs of the volume type. The id value assigned to the
storagetype:replication_device_backend_id
key in the volume
type must match the backend_id
assigned to the
replication_device
in cinder.conf
.
# openstack volume type set \
--property storagetype:replication_device_backend_id="<id>" \
<VOLUME_TYPE>
Note
Specifying which replication device to use is done in addition to the basic replication setup for a volume type seen in Configure a single replication target
Note
In a legacy system where volume types are present that were
replication enabled before adding multiple replication devices, the
storagetype:replication_device_backend_id
should be omitted
from any volume type that does/will use the legacy
replication_device
i.e. when
storagetype:replication_device_backend_id
is omitted the
replication_device with a backend_id
of
backend_id_legacy_rep
will be used.
Volume replication interoperability with other features
Most features are supported, except for the following:
- Replication Group operations are available for volumes in Synchronous mode only.
- The Ussuri release of OpenStack supports retyping in-use volumes to and from replication enabled volume types with limited exception of volumes with Metro replication enabled. To retype to a volume-type that is Metro enabled the volume must first be detached then retyped. The reason for this is so the paths from the Nova instance to the Metro R1 & R2 volumes must be initialised, this is not possible on the R2 device whilst a volume is attached.
- The image volume cache functionality is supported (enabled by
setting
image_volume_cache_enabled = True
), but one of two actions must be taken when creating the cached volume:- The first boot volume created on a backend (which will trigger the cached volume to be created) should be the smallest necessary size. For example, if the minimum size disk to hold an image is 5GB, create the first boot volume as 5GB. All subsequent boot volumes are extended to the user specific size.
- Alternatively, ensure that the
allow_extend
option in thereplication_device parameter
is set toTrue
. This is only applicable to VMAX-Hybrid arrays or All Flash array with HyperMax OS.
Failover host
Note
Failover and failback operations are not applicable in Metro configurations.
In the event of a disaster, or where there is required downtime, upgrade of the primary array for example, the administrator can issue the failover host command to failover to the configured target:
# cinder failover-host cinder_host@POWERMAX_FC_REPLICATION
After issuing cinder failover-host
Cinder will set the
R2 array as the target array for Cinder, however, to get existing
instances to use this new array and paths to volumes it is necessary to
first shelve Nova instances and then unshelve them, this will
effectively restart the Nova instance and re-establish data paths
between Nova instances and the volumes on the R2 array.
# nova shelve <server>
# nova unshelve [--availability-zone <availability_zone>] <server>
When a host is in failover mode performing normal volume or snapshot
provisioning will not be possible, failover host mode simply provides
access to replicated volumes to minimise environment down-time. The
primary objective whilst in failover mode should be to get the R1 array
back online. When the primary array becomes available again, you can
initiate a fail-back using the same failover command and specifying
--backend_id default
:
# cinder failover-host cinder_host@POWERMAX_FC_REPLICATION --backend_id default
After issuing the failover command to revert to the default backend host it is necessary to re-issue the Nova shelve and unshelve commands to restore the data paths between Nova instances and their corresponding back end volumes. Once reverted to the default backend volume and snapshot provisioning operations can continue as normal.
Failover promotion
Failover promotion can be used to transfer all existing RDF enabled volumes to the R2 array and overwrite any references to the original R1 array. This can be used in the event of total R1 array failure or in other cases where an array transfer is warranted. If the R1 array is online and working and the RDF links are still enabled the failover promotion will automatically delete rdf pairs as necessary. If the R1 array or the link to the R1 array is down, a half deletepair must be issued manually for those volumes during the failover promotion.
- Issue failover command:
# cinder failover-host <host>
- Enable array promotion:
# cinder failover-host --backend_id=pmax_failover_start_array_promotion <host>
- View and re-enable the cinder service
# cinder service-list
# cinder service-enable <host> <binary>
- Remove all volumes from volume groups
# cinder --os-volume-api-version 3.13 group-update --remove-volumes <Vol1ID, etc..> <volume_group_name>
- Detach all volumes that are attached to instances
# openstack server remove volume <instance_id> <volume_id>
Note
Deleting the instance will call a detach volume for each attached volume. A terminate connection can be issued manually using the following command for volumes that are stuck in the attached state without an instance.
# cinder --os-volume-api-version 3.50 attachment-delete <attachment_id>
- Delete all remaining instances
# nova delete <instance_id>
- Create new volume types
New volume types must be created with references to the remote array. All new volume types must adhere to the following guidelines:
1. Uses the same workload, SLO & compression setting as the previous R1 volume type.
2. Uses the remote array instead of the primary for its pool name.
3. Uses the same volume_backend_name as the previous volume type.
4. Must not have replication enabled.
Example existing volume type extra specs.
pool_name='Gold+None+SRP_1+000297900330', replication_enabled='<is> True',
storagetype:replication_device_backend_id='async-rep-1', volume_backend_name='POWERMAX_ISCSI_NONE'
Example new volume type extra specs.
pool_name='Gold+None+SRP_1+000197900049', volume_backend_name='POWERMAX_ISCSI_NONE'
- Retype volumes to new volume types
Additional checks will be performed during failover promotion retype to ensure workload, compression and slo settings meet the criteria specified above when creating the new volume types.
# cinder retype --migration-policy on-demand <volume> <volume_type>
Note
If the volumes RDF links are offline during this retype then a half deletepair must be performed manually after retype. Please reference section 8.a. below for guidance on this process.
8.a. Retype and RDF half deletepair
In instances where the rdf links are offline and rdf pairs have been set to partitioned state there are additional requirements. In that scenario the following order should be adhered to:
1. Retype all Synchronous volumes.
2. Half_deletepair all Synchronous volumes using the default storage group.
3. Retype all Asynchronous volumes.
4. Half_deletepair all Asynchronous volumes using their management storage group.
5. Retype all Metro volumes.
6. Half_deletepair all Metro volumes using their management storage group.
7. Delete the Asynchronous and Metro management storage groups.
Note
A half deletepair cannot be performed on Metro enabled volumes unless the symforce option has been enabled in the symapi options. In symapi/config/options uncomment and set 'SYMAPI_ALLOW_RDF_SYMFORCE = True'.
# symrdf -sid <sid> -sg <sg> -rdfg <rdfg> -force -symforce half_deletepair
- Issue failback
Issuing the failback command will disable both the failover and promotion flags. Please ensure all volumes have been retyped and all replication pairs have been deleted before issuing this command.
# cinder failover-host --backend_id default <host>
- Update cinder.conf
Update the cinder.conf file to include details for the new primary array. For more information please see the Configure block storage in cinder.conf section of this documentation.
- Restart the cinder services
Restart the cinder volume service to allow it to detect the changes made to the cinder.conf file.
- Set Metro volumes to ready state
Metro volumes will be set to a Not Ready state after performing rdf pair cleanup. Set these volumes back to Ready state to allow them to be attached to instances. The U4P instance must be restarted for this change to be detected.
# symdev -sid <sid> ready -devs <dev_id1, dev_id2>
Asynchronous and metro replication management groups
Asynchronous and metro volumes in an RDF session, i.e. belonging to
an SRDF group, must be managed together for RDF operations (although
there is a consistency exempt
option for creating and
deleting pairs in an Async group). To facilitate this management, we
create an internal RDF management storage group on the backend. This RDF
management storage group will use the following naming convention:
OS-[rdf_group_label]-[replication_mode]-rdf-sg
It is crucial for correct management that the volumes in this storage
group directly correspond to the volumes in the RDF group. For this
reason, it is imperative that the RDF group specified in the
cinder.conf
is for the exclusive use by this Cinder
backend. If there are any issues with the state of your RDF enabled
volumes prior to performing additional operations in Cinder you will be
notified in the Cinder volume logs.
Metro support
SRDF/Metro is a high availability solution. It works by masking both sides of the RDF relationship to the host, and presenting all paths to the host, appearing that they all point to the one device. In order to do this, there needs to be multi-path software running to manage writing to the multiple paths.
Note
The metro issue around formatting volumes when they are added to existing metro RDF groups has been fixed in Unisphere for PowerMax 9.1, however, it has only been addressed on arrays with PowerMax OS and will not be available on arrays running a HyperMax OS.
Volume retype - storage assisted volume migration
Volume retype with storage assisted migration is supported now for PowerMax arrays. Cinder requires that for storage assisted migration, a volume cannot be retyped across backends. For using storage assisted volume retype, follow these steps:
Note
From the Ussuri release of OpenStack the PowerMax driver supports retyping in-use volumes to and from replication enabled volume types with limited exception of volumes with Metro replication enabled. To retype to a volume-type that is Metro enabled the volume must first be detached then retyped. The reason for this is so the paths from the instance to the Metro R1 & R2 volumes must be initialised, this is not possible on the R2 device whilst a volume is attached.
Note
When multiple replication devices are configured. If retyping from one replication mode to another the R1 device ID is preserved and a new R2 side device is created. As a result, the device ID on the R2 array may be different after the retype operation has completed.
Note
Retyping an in-use volume to a metro enabled volume type is not
currently supported via storage-assisted migration. This retype can
still be performed using host-assisted migration by setting the
migration-policy to on-demand
.
cinder retype --migration-policy on-demand <volume> <volume-type>
For migrating a volume from one Service Level or Workload combination to another, use volume retype with the migration-policy to on-demand. The target volume type should have the same volume_backend_name configured and should have the desired pool_name to which you are trying to retype to (please refer to Create volume types for details).
$ cinder retype --migration-policy on-demand <volume> <volume-type>
Generic volume group support
Generic volume group operations are performed through the CLI using API version 3.1x of the Cinder API. Generic volume groups are multi-purpose groups which can be used for various features. The PowerMax driver supports consistent group snapshots and replication groups. Consistent group snapshots allows the user to take group snapshots which are consistent based on the group specs. Replication groups allow for tenant facing APIs to enable and disable replication, and to failover and failback, a group of volumes. Generic volume groups have replaced the deprecated consistency groups.
Consistent group snapshot
To create a consistent group snapshot, set a group-spec, having the
key consistent_group_snapshot_enabled
set to
<is> True
on the group.
# cinder --os-volume-api-version 3.11 group-type-key GROUP_TYPE set consistent_group_snapshot_enabled="<is> True"
Similarly the same key should be set on any volume type which is specified while creating the group.
# openstack volume type set --property consistent_group_snapshot_enabled="<is> True" POWERMAX_GROUP
If this key is not set on the group-spec or volume type, then the generic volume group will be created/managed by Cinder (not the PowerMax driver).
Note
The consistent group snapshot should not be confused with the PowerMax consistency group which is an SRDF construct.
Replication groups
As with Consistent group snapshot
consistent_group_snapshot_enabled
should be set to true on
the group and the volume type for replication groups. Only Synchronous
replication is supported for use with Replication Groups. When a volume
is created into a replication group, replication is on by default. The
disable_replication
api suspends I/O traffic on the
devices, but does NOT remove replication for the group. The
enable_replication
api resumes I/O traffic on the RDF
links. The failover_group
api allows a group to be failed
over and back without failing over the entire host. See below for
usage.
Note
A generic volume group can be both consistent group snapshot enabled and consistent group replication enabled.
Storage group names
Storage groups are created on the PowerMax as a result of creation of generic volume groups. These storage groups follow a different naming convention and are of the following format depending upon whether the groups have a name.
TruncatedGroupName_GroupUUID or GroupUUID
Group type, group, and group snapshot operations
Please refer to the official OpenStack block-storage groups documentation for the most up to date group operations
Group replication operations
Generic volume group operations no longer require the user to specify
the Cinder CLI version, however, performing generic volume group
replication operations still require this setting. When running generic
volume group commands set the value --os-volume-api-version
to 3.38
. These commands are not listed in the latest Cinder
CLI documentation so will remain here until added to the latest Cinder
CLI version or deprecated from Cinder.
- Enable group replication
cinder --os-volume-api-version 3.38 group-enable-replication GROUP
- Disable group replication
cinder --os-volume-api-version 3.38 group-disable-replication GROUP
- Failover group
cinder --os-volume-api-version 3.38 group-failover-replication GROUP
- Failback group
cinder --os-volume-api-version 3.38 group-failover-replication GROUP /
--secondary-backend-id default
Manage and unmanage Volumes
Managing volumes in OpenStack is the process whereby a volume which exists on the storage device is imported into OpenStack to be made available for use in the OpenStack environment. For a volume to be valid for managing into OpenStack, the following prerequisites must be met:
- The volume exists in a Cinder managed pool
- The volume is not part of a Masking View
- The volume is not part of an SRDF relationship
- The volume is configured as a TDEV (thin device)
- The volume is set to FBA emulation
- The volume must a whole GB e.g. 5.5GB is not a valid size
- The volume cannot be a SnapVX target
For a volume to exist in a Cinder managed pool, it must reside in the same Storage Resource Pool (SRP) as the backend which is configured for use in OpenStack. Specifying the pool correctly can be entered manually as it follows the same format:
Pool format: <service_level>+<srp>+<array_id>
Pool example: Diamond+SRP_1+111111111111
Key | Value |
---|---|
service_level |
The service level of the volume to be managed |
srp |
The Storage Resource Pool configured for use by the backend |
array_id |
The PowerMax serial number (12 digit numerical) |
Manage volumes
With your pool name defined you can now manage the volume into
OpenStack, this is possible with the CLI command
cinder manage
. The bootable
parameter is
optional in the command, if the volume to be managed into OpenStack is
not bootable leave this parameter out. OpenStack will also determine the
size of the value when it is managed so there is no need to specify the
volume size.
Command format:
$ cinder manage --name <new_volume_name> --volume-type <powermax_vol_type> \
--availability-zone <av_zone> <--bootable> <host> <identifier>
Command Example:
$ cinder manage --name powermax_managed_volume --volume-type POWERMAX_ISCSI_DIAMOND \
--availability-zone nova demo@POWERMAX_ISCSI_DIAMOND#Diamond+SRP_1+111111111111 031D8
After the above command has been run, the volume will be available for use in the same way as any other OpenStack PowerMax volume.
Note
An unmanaged volume with a prefix of OS-
in its
identifier name cannot be managed into OpenStack, as this is a reserved
keyword for managed volumes. If the identifier name has this prefix, an
exception will be thrown by the PowerMax driver on a manage
operation.
Managing volumes with replication enabled
Whilst it is not possible to manage volumes into OpenStack that are part of a SRDF relationship, it is possible to manage a volume into OpenStack and enable replication at the same time. This is done by having a replication enabled PowerMax volume type (for more information see section Volume Replication) during the manage volume process you specify the replication volume type as the chosen volume type. Once managed, replication will be enabled for that volume.
Note
It is not possible to manage into OpenStack SnapVX linked target volumes, only volumes which are a SnapVX source are permitted. We do not want a scenario where a snapshot source can exist outside of OpenStack management.
Unmanage volume
Unmanaging a volume is not the same as deleting a volume. When a volume is deleted from OpenStack, it is also deleted from the PowerMax at the same time. Unmanaging a volume is the process whereby a volume is removed from OpenStack but it remains for further use on the PowerMax. The volume can also be managed back into OpenStack at a later date using the process discussed in the previous section. Unmanaging volume is carried out using the Cinder unmanage CLI command:
Command format:
$ cinder unmanage <volume_name/volume_id>
Command example:
$ cinder unmanage powermax_test_vol
Once unmanaged from OpenStack, the volume can still be retrieved
using its device ID or OpenStack volume ID. Within Unisphere you will
also notice that the OS-
prefix has been removed, this is
another visual indication that the volume is no longer managed by
OpenStack.
Manage/unmanage snapshots
Users can manage PowerMax SnapVX snapshots into OpenStack if the source volume already exists in Cinder. Similarly, users will be able to unmanage OpenStack snapshots to remove them from Cinder but keep them on the storage backend.
Set-up, restrictions and requirements:
- No additional settings or configuration is required to support this functionality.
- Manage/Unmanage snapshots requires SnapVX functionality support on PowerMax.
- Manage/Unmanage Snapshots in OpenStack Cinder is only supported at present through Cinder CLI commands.
- It is only possible to manage or unmanage one snapshot at a time in Cinder.
Manage SnapVX snapshot
It is possible to manage PowerMax SnapVX snapshots into OpenStack, where the source volume from which the snapshot is taken already exists in, and is managed by OpenStack Cinder. The source volume may have been created in OpenStack Cinder, or it may have been managed in to OpenStack Cinder also. With the support of managing SnapVX snapshots included in OpenStack Queens, the restriction around managing SnapVX source volumes has been removed.
Note
It is not possible to manage into OpenStack SnapVX linked target volumes, only volumes which are a SnapVX source are permitted. We do not want a scenario where a snapshot source can exist outside of OpenStack management.
Requirements/restrictions:
- The SnapVX source volume must be present in and managed by Cinder.
- The SnapVX snapshot name must not begin with
OS-
. - The SnapVX snapshot source volume must not be in a failed-over state.
- Managing a SnapVX snapshot will only be allowed if the snapshot has no linked target volumes.
Command structure:
- Identify your SnapVX snapshot for management on the PowerMax, note the name.
- Ensure the source volume is already managed into OpenStack Cinder, note the device ID.
- Using the Cinder CLI, use the following command structure to manage a Snapshot into OpenStack Cinder:
$ cinder snapshot-manage --id-type source-name
[--name <name>]
[--description <description>]
[--metadata [<key=value> [<key=value> ...]]]
<volume name/id> <identifier>
Positional arguments:
<volume name/id>
Source OpenStack volume name<identifier>
Name of existing snapshot on PowerMax backend
Optional arguments:
--name <name>
Snapshot name (Default=None
)--description <description>
Snapshot description (Default=None
)--metadata [<key=value> [<key=value> ...]]
Metadatakey=value
pairs (Default=None
)
Example:
$ cinder snapshot-manage --name SnapshotManaged \
--description "Managed Queens Feb18" \
powermax-vol-1 PowerMaxSnapshot
Where:
- The name in OpenStack after managing the SnapVX snapshot will be
SnapshotManaged
. - The snapshot will have the description
Managed Queens Feb18
. - The Cinder volume name is
powermax-vol-1
. - The name of the SnapVX snapshot on the PowerMax backend is
PowerMaxSnapshot
.
Outcome:
After the process of managing the Snapshot has completed, the SnapVX
snapshot on the PowerMax backend will be prefixed by the letters
OS-
, leaving the snapshot in this example named
OS-PowerMaxSnapshot
. The associated snapshot managed by
Cinder will be present for use under the name
SnapshotManaged
.
Unmanage cinder snapshot
Unmanaging a snapshot in Cinder is the process whereby the snapshot is removed from and no longer managed by Cinder, but it still exists on the storage backend. Unmanaging a SnapVX snapshot in OpenStack Cinder follows this behaviour, whereby after unmanaging a PowerMax SnapVX snapshot from Cinder, the snapshot is removed from OpenStack but is still present for use on the PowerMax backend.
Requirements/Restrictions:
- The SnapVX source volume must not be in a failed over state.
Command Structure:
Identify the SnapVX snapshot you want to unmanage from OpenStack Cinder, note the snapshot name or ID as specified by Cinder. Using the Cinder CLI use the following command structure to unmanage the SnapVX snapshot from Cinder:
$ cinder snapshot-unmanage <snapshot>
Positional arguments:
<snapshot>
Cinder snapshot name or ID.
Example:
$ cinder snapshot-unmanage SnapshotManaged
Where:
- The SnapVX snapshot name in OpenStack Cinder is SnapshotManaged.
After the process of unmanaging the SnapVX snapshot in Cinder, the
snapshot on the PowerMax backend will have the OS-
prefix
removed to indicate it is no longer OpenStack managed. In the example
above, the snapshot after unmanaging from OpenStack will be named
PowerMaxSnapshot
on the storage backend.
List manageable volumes and snapshots
Manageable volumes
Volumes that can be managed by and imported into Openstack.
List manageable volume is filtered by:
- Volume size should be 1026MB or greater (1GB PowerMax Cinder Vol = 1026 MB)
- Volume size should be a whole integer GB capacity
- Volume should not be a part of masking view.
- Volume status should be
Ready
- Volume service state should be
Normal
- Volume emulation type should be
FBA
- Volume configuration should be
TDEV
- Volume should not be a system resource.
- Volume should not be
private
- Volume should not be
encapsulated
- Volume should not be
reserved
- Volume should not be a part of an RDF session
- Volume should not be a SnapVX Target
- Volume identifier should not begin with
OS-
. - Volume should not be in more than one storage group.
Manageable snaphots
Snapshots that can be managed by and imported into Openstack
List manageable snapshots is filtered by:
- The source volume should be marked as SnapVX source.
- The source volume should be 1026MB or greater
- The source volume should be a whole integer GB capacity.
- The source volume emulation type should be
FBA
. - The source volume configuration should be
TDEV
. - The source volume should not be
private
. - The source volume should be not be a system resource.
- The snapshot identifier should not start with
OS-
ortemp-
. - The snapshot should not be expired.
- The snapshot generation number should npt be greater than 0.
Note
There is some delay in the syncing of the Unisphere for PowerMax
database when the state/properties of a volume is modified using
symcli
. To prevent this it is preferable to modify
state/properties of volumes within Unisphere.
Cinder backup support
PowerMax Cinder driver support Cinder backup functionality. For further information on setup, configuration and usage please see the official OpenStack volume backup documentation and related volume backup CLI guide.
Note
rpc_response_timeout
may need to be increased
significantly in volume backup operations especially in replication
scenarios where the creation operation will be longer. For more
information on rpc_response_timeout
please refer to Live migration
configuration
Port group & port load balancing
By default port groups are selected at random from
cinder.conf
when connections are initialised between
volumes on the backend array and compute instances in Nova. If a port
group is set in the volume type extra specifications this will take
precedence over any port groups configured in cinder.conf
.
Port selection within the chosen port group is also selected at random
by default.
With port group and port load balancing in the PowerMax for Cinder
driver users can now select the port group and port load by determining
which has the lowest load. The load metric is defined by the user in
both instances so the selection process can better match the needs of
the user and their environment. Available metrics are detailed in the
performance metrics
section.
Port Groups are reported on at five minute time deltas (diagnostic),
and FE Ports are reported on at one minute time deltas (real-time) if
real-time metrics are enabled, else default five minute time delta
(diagnostic). The window at which performance metrics are analysed is a
user-configured option in cinder.conf
, this is detailed in
the configuration
section.
Calculating load
The process by which Port Group or Port load is calculated is the same for both. The user specifies the look back window which determines how many performance intervals to measure, 60 minutes will give 12 intervals of 5 minutes each for example. If no lookback window is specified or is set to 0 only the most recent performance metric will be analysed. This will give a slight performance improvement but with the improvements made to the performance REST endpoints for load this improvement is negligible. For real-time stats a minimum of 1 minute is required.
Once a call is made to the performance REST endpoints, the performance data for that PG or port is extracted. Then the metric values are summed and divided by the count of intervals to get the average for the look back window.
The performance metric average value for each asset is added to a Python heap. Once all assets have been measured the lowest value will always be at position 0 in the heap so there is no extra time penalty requirement for search.
Pre-requisites
Before load balancing can be enabled in the PowerMax for Cinder driver performance metrics collection must be enabled in Unisphere. Real-time performance metrics collection is enabled separately from diagnostic metrics collection. Performance metric collection is only available for local arrays in Unisphere.
After performance metrics registration there is a time delay before Unisphere records performance metrics, adequate time must be given before enabling load balancing in Cinder else default random selection method will be used. It is recommended to wait 4 hours after performance registration before enabling load balancing in Cinder.
Configuration
A number of configuration options are available for users so load balancing can be set to better suit the needs of the environment. These configuration options are detailed in the table below.
cinder.conf parameter |
options | Default | Description |
---|---|---|---|
|
True/False |
False |
Enable/disable load balancing for a PowerMax backend. |
load_balance_real_time |
True/False |
False |
Enable/disable real-time performance metrics for Port level metrics (not available for Port Group). |
load_data_format |
Avg/Max |
Avg |
Performance data format, not applicable for real-time. |
load_lookback |
int |
60 |
How far in minutes to look back for diagnostic performance metrics in load calculation, minimum of 0 maximum of 1440 (24 hours). |
load_real_time_lookback |
int |
1 |
How far in minutes to look back for real-time performance metrics in load calculation, minimum of 1 maximum of 60 (24 hours). |
port_group_load_metric |
See below | PercentBusy |
Metric used for port group load calculation. |
port_load_metric |
See below | PercentBusy |
Metric used for port group load calculation. |
Port-Group Metrics
Metric | cinder.conf option | Description |
---|---|---|
|
PercentBusy |
The percent of time the port group is busy. |
|
AvgIOSize |
Calculated value: (HA Kbytes transferred per
sec / total IOs per sec) |
|
IOs |
The number of host IO operations performed
each second, including writes and random and sequential reads. |
|
MBs |
The number of host MBs read each second. |
|
MBRead |
The number of reads per second in MBs. |
|
MBWritten |
The number of writes per second in MBs. |
|
Reads |
The average number of host reads performed per second. |
|
Writes |
The average number of host writes performed per second. |
Port Metrics
Metric | cinder.conf option | Real-Time Supported | Description |
---|---|---|---|
|
PercentBusy |
|
|
|
AvgIOSize |
|
|
|
IOs |
|
|
|
MBs |
|
|
|
MBRead |
|
|
|
MBWritten |
|
|
|
Reads |
|
|
|
Writes |
|
|
|
SpeedGBs |
|
|
|
ResponseTime |
|
|
|
ReadResponseTime |
|
|
|
WriteResponseTime |
|
|
Upgrading from SMI-S based driver to REST API based driver
Seamless upgrades from an SMI-S based driver to REST API based driver, following the setup instructions above, are supported with a few exceptions:
- Seamless upgrade from SMI-S(Ocata and earlier) to REST(Pike and later) is now available on all functionality including Live Migration.
- Consistency groups are deprecated in Pike. Generic Volume Groups are supported from Pike onwards.