The "Preparing your environment" section on the configuration page is out of date as it still refers to the service token. It is also out of place for this page and is redundant with the installation guide[1] and the developer environment guide[2]. Just delete it. [1] https://docs.openstack.org/keystone/latest/install/index.html [2] https://docs.openstack.org/keystone/latest/contributor/set-up-keystone.html Change-Id: I1e3a17044260b2ca378a01c836b3fb6bfabe0e6d
18 KiB
Configuring Keystone
Setting up other OpenStack Services
Creating Service Users
To configure the OpenStack services with service users, we need to
create a project for all the services, and then users for each of the
services. We then assign those service users an admin
role
on the service project. This allows them to validate tokens - and to
authenticate and authorize other user requests.
Create a project for the services, typically named
service
(however, the name can be whatever you choose):
$ openstack project create service
Create service users for nova
, glance
,
swift
, and neutron
(or whatever subset is
relevant to your deployment):
$ openstack user create nova --password Sekr3tPass --project service
Repeat this for each service you want to enable.
Create an administrative role for the service accounts, typically
named admin
(however the name can be whatever you choose).
For adding the administrative role to the service accounts, you'll need
to know the name of the role you want to add. If you don't have it
handy, you can look it up quickly with:
$ openstack role list
Once you have it, grant the administrative role to the service users.
$ openstack role add admin --project service --user nova
Defining Services
Keystone also acts as a service catalog to let other OpenStack systems know where relevant API endpoints exist for OpenStack Services. The OpenStack Dashboard, in particular, uses this heavily - and this must be configured for the OpenStack Dashboard to properly function.
The endpoints for these services are defined in a template, an
example of which is in the project as the file
etc/default_catalog.templates
.
Keystone supports two means of defining the services, one is the catalog template, as described above - in which case everything is detailed in that template.
The other is a SQL backend for the catalog service, in which case after Keystone is online, you need to add the services to the catalog:
$ openstack service create compute --name nova \
--description "Nova Compute Service"
$ openstack service create ec2 --name ec2 \
--description "EC2 Compatibility Layer"
$ openstack service create image --name glance \
--description "Glance Image Service"
$ openstack service create identity --name keystone \
--description "Keystone Identity Service"
$ openstack service create object-store --name swift \
--description "Swift Service"
Identity sources
One of the most impactful decisions you'll have to make when configuring keystone is deciding how you want keystone to source your identity data. Keystone supports several different choices that will substantially impact how you'll configure, deploy, and interact with keystone.
You can also mix-and-match various sources of identity (see Domain-specific Drivers below for an example). For example, you can store OpenStack service users and their passwords in SQL, manage customers in LDAP, and authenticate employees via SAML federation.
Domain-specific Drivers
Keystone supports the option (disabled by default) to specify identity driver configurations on a domain by domain basis, allowing, for example, a specific domain to have its own LDAP or SQL server. This is configured by specifying the following options:
[identity]
domain_specific_drivers_enabled = True
domain_config_dir = /etc/keystone/domains
Setting domain_specific_drivers_enabled
to
True
will enable this feature, causing keystone to look in
the domain_config_dir
for config files of the form:
keystone.<domain_name>.conf
Options given in the domain specific configuration file will override those in the primary configuration file for the specified domain only. Domains without a specific configuration file will continue to use the options from the primary configuration file.
Keystone also supports the ability to store the domain-specific configuration options in the keystone SQL database, managed via the Identity API, as opposed to using domain-specific configuration files.
This capability (which is disabled by default) is enabled by specifying the following options in the main keystone configuration file:
[identity]
domain_specific_drivers_enabled = true
domain_configurations_from_database = true
Once enabled, any existing domain-specific configuration files in the configuration directory will be ignored and only those domain-specific configuration options specified via the Identity API will be used.
Unlike the file-based method of specifying domain-specific
configurations, options specified via the Identity API will become
active without needing to restart the keystone server. For performance
reasons, the current state of configuration options for a domain are
cached in the keystone server, and in multi-process and multi-threaded
keystone configurations, the new configuration options may not become
active until the cache has timed out. The cache settings for domain
config options can be adjusted in the general keystone configuration
file (option cache_time
in the domain_config
group).
Note
It is important to notice that when using either of these methods of specifying domain-specific configuration options, the main keystone configuration file is still maintained. Only those options that relate to the Identity driver for users and groups (i.e. specifying whether the driver for this domain is SQL or LDAP, and, if LDAP, the options that define that connection) are supported in a domain-specific manner. Further, when using the configuration options via the Identity API, the driver option must be set to an LDAP driver (attempting to set it to an SQL driver will generate an error when it is subsequently used).
For existing installations that already use file-based
domain-specific configurations who wish to migrate to the SQL-based
approach, the keystone-manage
command can be used to upload
all configuration files to the SQL database:
$ keystone-manage domain_config_upload --all
Once uploaded, these domain-configuration options will be visible via the Identity API as well as applied to the domain-specific drivers. It is also possible to upload individual domain-specific configuration files by specifying the domain name:
$ keystone-manage domain_config_upload --domain-name DOMAINA
Note
It is important to notice that by enabling either of the domain-specific configuration methods, the operations of listing all users and listing all groups are not supported, those calls will need either a domain filter to be specified or usage of a domain scoped token.
Note
Keystone does not support moving the contents of a domain (i.e. "its" users and groups) from one backend to another, nor group membership across backend boundaries.
Note
When using the file-based domain-specific configuration method, to delete a domain that uses a domain specific backend, it's necessary to first disable it, remove its specific configuration file (i.e. its corresponding keystone.<domain_name>.conf) and then restart the Identity server. When managing configuration options via the Identity API, the domain can simply be disabled and deleted via the Identity API; since any domain-specific configuration options will automatically be removed.
Note
Although keystone supports multiple LDAP backends via the above domain-specific configuration methods, it currently only supports one SQL backend. This could be either the default driver or a single domain-specific backend, perhaps for storing service users in a predominantly LDAP installation.
Note
Keystone has deprecated the
keystone-manage domain_config_upload
option. The keystone
team recommends setting domain config options via the API instead.
Due to the need for user and group IDs to be unique across an OpenStack installation and for keystone to be able to deduce which domain and backend to use from just a user or group ID, it dynamically builds a persistent identity mapping table from a public ID to the actual domain, local ID (within that backend) and entity type. The public ID is automatically generated by keystone when it first encounters the entity. If the local ID of the entity is from a backend that does not guarantee to generate UUIDs, a hash algorithm will generate a public ID for that entity, which is what will be exposed by keystone.
The use of a hash will ensure that if the public ID needs to be regenerated then the same public ID will be created. This is useful if you are running multiple keystones and want to ensure the same ID would be generated whichever server you hit.
While keystone will dynamically maintain the identity mapping, including removing entries when entities are deleted via the keystone, for those entities in backends that are managed outside of keystone (e.g. a read-only LDAP), keystone will not know if entities have been deleted and hence will continue to carry stale identity mappings in its table. While benign, keystone provides an ability for operators to purge the mapping table of such stale entries using the keystone-manage command, for example:
$ keystone-manage mapping_purge --domain-name DOMAINA --local-id abc@de.com
A typical usage would be for an operator to obtain a list of those entries in an external backend that had been deleted out-of-band to keystone, and then call keystone-manage to purge those entries by specifying the domain and local-id. The type of the entity (i.e. user or group) may also be specified if this is needed to uniquely identify the mapping.
Since public IDs can be regenerated with the correct generator implementation, if the details of those entries that have been deleted are not available, then it is safe to simply bulk purge identity mappings periodically, for example:
$ keystone-manage mapping_purge --domain-name DOMAINA
will purge all the mappings for DOMAINA. The entire mapping table can be purged with the following command:
$ keystone-manage mapping_purge --all
Generating public IDs in the first run may take a while, and most
probably first API requests to fetch user list will fail by timeout. To
prevent this, mapping_populate
command should be executed.
It should be executed right after LDAP has been configured or after
mapping_purge
.
$ keystone-manage mapping_populate --domain DOMAINA
Public ID Generators
Keystone supports a customizable public ID generator and it is
specified in the [identity_mapping]
section of the
configuration file. Keystone provides a sha256 generator as default,
which produces regenerable public IDs. The generator algorithm for
public IDs is a balance between key size (i.e. the length of the public
ID), the probability of collision and, in some circumstances, the
security of the public ID. The maximum length of public ID supported by
keystone is 64 characters, and the default generator (sha256) uses this
full capability. Since the public ID is what is exposed externally by
keystone and potentially stored in external systems, some installations
may wish to make use of other generator algorithms that have a different
trade-off of attributes. A different generator can be installed by
configuring the following property:
generator
- identity mapping generator. Defaults tosha256
(implemented bykeystone.identity.id_generators.sha256.Generator
)
Warning
Changing the generator may cause all existing public IDs to be become invalid, so typically the generator selection should be considered immutable for a given installation.
Service Catalog
Keystone provides two configuration options for managing a service catalog.
SQL-based Service Catalog
(sql.Catalog
)
A dynamic database-backed driver fully supporting persistent configuration.
keystone.conf
example:
[catalog]
driver = sql
Note
A template_file does not need to be defined for the sql based catalog.
To build your service catalog using this driver, see the built-in help:
$ openstack --help
$ openstack service create --help
$ openstack endpoint create --help
File-based Service
Catalog (templated.Catalog
)
The templated catalog is an in-memory backend initialized from a
read-only template_file
. Choose this option only if you
know that your service catalog will not change very much over time.
Note
Attempting to change your service catalog against this driver will
result in HTTP 501 Not Implemented
errors. This is the
expected behavior. If you want to use these commands, you must instead
use the SQL-based Service Catalog driver.
keystone.conf
example:
[catalog]
driver = templated
template_file = /opt/stack/keystone/etc/default_catalog.templates
The value of template_file
is expected to be an absolute
path to your service catalog configuration. An example
template_file
is included in keystone, however you should
create your own to reflect your deployment.
Endpoint Policy
The Endpoint Policy feature provides associations between service endpoints and policies that are already stored in the Identity server and referenced by a policy ID.
Configure the endpoint policy backend driver in the
[endpoint_policy]
section. For example:
[endpoint_policy]
driver = sql
See API Specification for Endpoint Policy <https://developer.openstack.org/ api-ref/identity/v3-ext/index.html#os-endpoint-policy-api> for the details of API definition.
SSL
A secure deployment should have keystone running in a web server (such as Apache httpd), or behind an SSL terminator.
Limiting list return size
Keystone provides a method of setting a limit to the number of
entities returned in a collection, which is useful to prevent overly
long response times for list queries that have not specified a
sufficiently narrow filter. This limit can be set globally by setting
list_limit
in the default section of
keystone.conf
, with no limit set by default. Individual
driver sections may override this global value with a specific limit,
for example:
[resource]
list_limit = 100
If a response to list_{entity}
call has been truncated,
then the response status code will still be 200 (OK), but the
truncated
attribute in the collection will be set to
true
.
Supported clients
There are two supported clients, python-keystoneclient project provides python bindings and python-openstackclient provides a command line interface.
Authenticating with a Password via CLI
To authenticate with keystone using a password and
python-openstackclient
, set the following flags, note that
the following user referenced below should be granted the
admin
role.
--os-username OS_USERNAME
: Name of your user--os-password OS_PASSWORD
: Password for your user--os-project-name OS_PROJECT_NAME
: Name of your project--os-auth-url OS_AUTH_URL
: URL of the keystone authentication server
You can also set these variables in your environment so that they do not need to be passed as arguments each time:
$ export OS_USERNAME=my_username
$ export OS_PASSWORD=my_password
$ export OS_PROJECT_NAME=my_project
$ export OS_AUTH_URL=http://localhost:35357/v3
For example, the commands user list
,
token issue
and project create
can be invoked
as follows:
# Using password authentication, with environment variables
$ export OS_USERNAME=admin
$ export OS_PASSWORD=secret
$ export OS_PROJECT_NAME=admin
$ export OS_AUTH_URL=http://localhost:35357/v3
$ openstack user list
$ openstack project create demo
$ openstack token issue
# Using password authentication, with flags
$ openstack --os-username=admin --os-password=secret --os-project-name=admin --os-auth-url=http://localhost:35357/v3 user list
$ openstack --os-username=admin --os-password=secret --os-project-name=admin --os-auth-url=http://localhost:35357/v3 project create demo