Unified SDK for OpenStack
Go to file
Johannes Kulik 163b694410 Revert "Revert "Add "security_group_ids" to Port's query parameters""
This reverts commit 5e969fb49d.

Reason for revert: The revert happened to resolve a merge conflict and was supposed to be re-reverted afterwards. This is the re-revert.

Original Commit message for original change Ic557dc3bf97a193fd28c13792302fb8396e29df1:

Neutron's port-security-groups-filtering extension allows to filter
ports by security-group(s). This feature was added with [1].

We keep the name like in the attribute "security_group_ids" instead of
"security_groups" to stay consistent within the Port model.

[1] https://launchpad.net/neutron/+bug/1405057

Change-Id: I060edb9c0d2eeb03d514707b69978f3d5f0ae3f4
2022-11-30 15:24:26 +01:00
devstack Finish updating links to point to opendev 2019-04-21 12:31:44 +00:00
doc Merge "Cron Triggers proxy" 2022-11-21 20:25:52 +00:00
examples Add shared file systems support 2021-02-18 08:48:21 -08:00
extras Add ansible stable-2.9 job and run 2.8 and 2.9 2020-03-24 08:43:10 -05:00
openstack Revert "Revert "Add "security_group_ids" to Port's query parameters"" 2022-11-30 15:24:26 +01:00
playbooks/devstack [tests] Improve devstack/post playbook efficiency 2020-03-25 20:06:51 +00:00
releasenotes Merge "Revert "compute/server: add support of target state for evacuate API"" 2022-11-22 13:49:12 +00:00
tools Stop subclassing object 2020-05-10 08:29:41 -05:00
.coveragerc Fix coverage configuration and execution 2016-03-14 07:34:53 +00:00
.gitignore Merge tox, tests and other support files 2017-10-04 14:51:08 -05:00
.gitreview OpenDev Migration Patch 2019-04-19 19:47:46 +00:00
.mailmap Merge tox, tests and other support files 2017-10-04 14:51:08 -05:00
.pre-commit-config.yaml Add pre-commit 2021-03-11 16:28:27 +00:00
.stestr.conf Merge shade and os-client-config into the tree 2017-11-15 09:03:23 -06:00
.zuul.yaml Added Ansible OpenStack Collection to Bifrost's job.required-projects 2022-10-05 10:57:12 +02:00
CONTRIBUTING.rst fix "How To Contribute" url 2019-09-18 14:34:22 +08:00
HACKING.rst Fix some typos 2019-03-09 17:25:16 +01:00
LICENSE setting up the initial layout; move the api proposals to api_strawman 2014-01-24 22:58:25 -06:00
MANIFEST.in setting up the initial layout; move the api proposals to api_strawman 2014-01-24 22:58:25 -06:00
README.rst docs: Add overview of supported services to README 2022-11-22 11:29:28 +00:00
SHADE-MERGE-TODO.rst Use discovery instead of config to create proxies 2018-10-06 07:44:29 -05:00
babel.cfg setting up the initial layout; move the api proposals to api_strawman 2014-01-24 22:58:25 -06:00
bindep.txt Remove python-dev from bindep 2022-11-07 11:02:00 +01:00
docs-requirements.txt Add requirements.txt file for readthedocs 2015-05-21 08:16:44 -07:00
include-acceptance-regular-user.txt Initialize tests of real clouds 2022-10-18 14:56:39 +02:00
post_test_hook.sh Update load_balancer for v2 API 2017-07-18 18:05:29 -07:00
requirements.txt Fix l-c testing for ubuntu focal 2020-09-10 13:02:57 +02:00
setup.cfg Update python testing classifier 2021-12-22 08:38:04 +00:00
setup.py Small cleanups after Python2 drop 2020-03-27 23:49:45 +00:00
test-requirements.txt Apply pep8 import order style 2021-03-08 16:50:54 +01:00
tox.ini Initialize tests of real clouds 2022-10-18 14:56:39 +02:00

README.rst

openstacksdk

openstacksdk is a client library for building applications to work with OpenStack clouds. The project aims to provide a consistent and complete set of interactions with OpenStack's many services, along with complete documentation, examples, and tools.

It also contains an abstraction interface layer. Clouds can do many things, but there are probably only about 10 of them that most people care about with any regularity. If you want to do complicated things, the per-service oriented portions of the SDK are for you. However, if what you want is to be able to write an application that talks to any OpenStack cloud regardless of configuration, then the Cloud Abstraction layer is for you.

More information about the history of openstacksdk can be found at https://docs.openstack.org/openstacksdk/latest/contributor/history.html

Getting started

openstacksdk aims to talk to any OpenStack cloud. To do this, it requires a configuration file. openstacksdk favours clouds.yaml files, but can also use environment variables. The clouds.yaml file should be provided by your cloud provider or deployment tooling. An example:

clouds:
  mordred:
    region_name: Dallas
    auth:
      username: 'mordred'
      password: XXXXXXX
      project_name: 'demo'
      auth_url: 'https://identity.example.com'

openstacksdk will look for clouds.yaml files in the following locations:

  • . (the current directory)
  • $HOME/.config/openstack
  • /etc/openstack

openstacksdk consists of three layers. Most users will make use of the proxy layer. Using the above clouds.yaml, consider listing servers:

import openstack

# Initialize and turn on debug logging
openstack.enable_logging(debug=True)

# Initialize connection
conn = openstack.connect(cloud='mordred')

# List the servers
for server in conn.compute.servers():
    print(server.to_dict())

openstacksdk also contains a higher-level cloud layer based on logical operations:

import openstack

# Initialize and turn on debug logging
openstack.enable_logging(debug=True)

# Initialize connection
conn = openstack.connect(cloud='mordred')

# List the servers
for server in conn.list_servers():
    print(server.to_dict())

The benefit of this layer is mostly seen in more complicated operations that take multiple steps and where the steps vary across providers. For example:

import openstack

# Initialize and turn on debug logging
openstack.enable_logging(debug=True)

# Initialize connection
conn = openstack.connect(cloud='mordred')

# Upload an image to the cloud
image = conn.create_image(
    'ubuntu-trusty', filename='ubuntu-trusty.qcow2', wait=True)

# Find a flavor with at least 512M of RAM
flavor = conn.get_flavor_by_ram(512)

# Boot a server, wait for it to boot, and then do whatever is needed
# to get a public IP address for it.
conn.create_server(
    'my-server', image=image, flavor=flavor, wait=True, auto_ip=True)

Finally, there is the low-level resource layer. This provides support for the basic CRUD operations supported by REST APIs and is the base building block for the other layers. You typically will not need to use this directly:

import openstack
import openstack.config.loader
import openstack.compute.v2.server

# Initialize and turn on debug logging
openstack.enable_logging(debug=True)

# Initialize connection
conn = openstack.connect(cloud='mordred')

# List the servers
for server in openstack.compute.v2.server.Server.list(session=conn.compute):
    print(server.to_dict())

Configuration

openstacksdk uses the openstack.config module to parse configuration. openstack.config will find cloud configuration for as few as one cloud and as many as you want to put in a config file. It will read environment variables and config files, and it also contains some vendor specific default values so that you don't have to know extra info to use OpenStack

  • If you have a config file, you will get the clouds listed in it
  • If you have environment variables, you will get a cloud named envvars
  • If you have neither, you will get a cloud named defaults with base defaults

You can view the configuration identified by openstacksdk in your current environment by running openstack.config.loader. For example:

$ python -m openstack.config.loader

More information at https://docs.openstack.org/openstacksdk/latest/user/config/configuration.html

Supported services

The following services are currently supported. A full list of all available OpenStack service can be found in the Project Navigator.

Note

Support here does not guarantee full-support for all APIs. It simply means some aspect of the project is supported.

Supported services
Service Description Cloud Layer Proxy & Resource Layer
Compute
Nova Compute ✔ (openstack.compute)
Hardware Lifecycle
Ironic Bare metal provisioning ✔ (openstack.baremetal, openstack.baremetal_introspection)
Cyborg Lifecycle management of accelerators ✔ (openstack.accelerator)
Storage
Cinder Block storage ✔ (openstack.block_storage)
Swift Object store ✔ (openstack.object_store)
Cinder Shared filesystems ✔ (openstack.share_file_system)
Networking
Neutron Networking ✔ (openstack.network)
Octavia Load balancing ✔ (openstack.load_balancer)
Designate DNS ✔ (openstack.dns)
Shared services
Keystone Identity ✔ (openstack.identity)
Placement Placement ✔ (openstack.placement)
Glance Image storage ✔ (openstack.image)
Barbican Key management ✔ (openstack.key_manager)
Workload provisioning
Magnum Container orchestration engine provisioning
Orchestration
Heat Orchestration ✔ (openstack.orchestration)
Senlin Clustering ✔ (openstack.clustering)
Mistral Workflow ✔ (openstack.workflow)
Zaqar Messaging ✔ (openstack.message)
Application lifecycle
Masakari Instances high availability service ✔ (openstack.instance_ha)